Effect of strength and speed of torque development on balance recovery with the ankle strategy.

Injury Prevention and Mobility Laboratory, School of Kinesiology, Simon Fraser University, Burnaby, British Columbia, V5A 1S6 Canada.
Journal of Neurophysiology (Impact Factor: 3.3). 09/2002; 88(2):613-20.
Source: PubMed

ABSTRACT In the event of an unexpected disturbance to balance, the ability to recover a stable upright stance should depend not only on the magnitude of torque that can be generated by contraction of muscles spanning the lower extremity joints but also on how quickly these torques can be developed. In the present study, we used a combination of experimental and mathematical models of balance recovery by sway (feet in place responses) to test this hypothesis. Twenty-three young subjects participated in experiments in which they were supported in an inclined standing position by a horizontal tether and instructed to recover balance by contracting only their ankle muscles. The maximum lean angle where they could recover balance without release of the tether (static recovery limit) averaged 14.9 +/- 1.4 degrees (mean +/- SD). The maximum initial lean angle where they could recover balance after the tether was unexpectedly released and the ankles were initially relaxed (dynamic recovery limit) averaged 5.9 +/- 1.1 degrees, or 60 +/- 11% smaller than the static recovery limit. Peak ankle torque did not differ significantly between the two conditions (and averaged 116 +/- 32 Nm), indicating the strong effect on recovery ability of latencies in the onset and subsequent rates of torque generation (which averaged 99 +/- 13 ms and 372 +/- 267 N. m/s, respectively). Additional experiments indicated that dynamic recovery limits increased 11 +/- 14% with increases in the baseline ankle torques prior to release (from an average value of 31 +/- 18 to 54 +/- 24 N. m). These trends are in agreement with predictions from a computer simulation based on an inverted pendulum model, which illustrate the specific combinations of baseline ankle torque, rate of torque generation, and peak ankle torque that are required to attain target recovery limits.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mobility characteristics associated with activity of daily living such as sitting down, lying down, rising up, and walking are considered to be important in maintaining functional independence and healthy life style especially for the growing elderly population. Characteristics of postural transitions such as sit-to-stand are widely used by clinicians as a physical indicator of health, and walking is used as an important mobility assessment tool. Many tools have been developed to assist in the assessment of functional levels and to detect a person’s activities during daily life. These include questionnaires, observation, diaries, kinetic and kinematic systems, and validated functional tests. These measures are costly and time consuming, rely on subjective patient recall and may not accurately reflect functional ability in the patient’s home. In order to provide a low-cost, objective assessment of functional ability, inertial measurement unit (IMU) using MEMS technology has been employed to ascertain ADLs. These measures facilitate long-term monitoring of activity of daily living using wearable sensors. IMU system are desirable in monitoring human postures since they respond to both frequency and the intensity of movements and measure both dc (gravitational acceleration vector) and ac (acceleration due to body movement) components at a low cost. This has enabled the development of a small, lightweight, portable system that can be worn by a free-living subject without motion impediment – TEMPO (Technology Enabled Medical Precision Observation). Using this IMU system, we acquired indirect measures of biomechanical variables that can be used as an assessment of individual mobility characteristics with accuracy and recognition rates that are comparable to the modern motion capture systems. In this study, five subjects performed various ADLs and mobility measures such as posture transitions and gait characteristics were obtained. We developed postural event detection and classification algorithm using denoised signals from single wireless IMU placed at sternum. The algorithm was further validated and verified with motion capture system in laboratory environment. Wavelet denoising highlighted postural events and transition durations that further provided clinical information on postural control and motor coordination. The presented method can be applied in real life ambulatory monitoring approaches for assessing condition of elderly.
    Biomedical sciences instrumentation 04/2013; 49:224-233.
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study aimed to evaluate the motor response time and ability to develop joint torque at the knee and ankle in older women with and without a history of falls, in addition to investigating the effect of aging on these capacities. We assessed 18 young females, 21 older female fallers and 22 older female non-fallers. The peak torque, rate of torque development, rate of electromyography (EMG) rise, reaction time, premotor time and motor time were obtained through a dynamometric assessment and simultaneous electromyography. Surface EMGs of the rectus femoris (RF), vastus lateralis (VL), biceps femoris (BF), gastrocnemius lateralis (GL) and tibialis anterior (TA) muscles were recorded. Knee extension and flexion peak torques were lower in older fallers than in non-fallers. Knee extension and flexion and ankle plantarflexion and dorsiflexion peak torques were lower in both older groups than in the younger group. The rate of EMG rise of the BF and the motor time of the TA were lower and higher, respectively, in older fallers than in the younger adults. The time to reach peak torque in knee extension/flexion and ankle plantarflexion/dorsiflexion and the motor times of the RF, VL, BF and GL were higher in both older groups than in the younger groups. The motor time of the TA during ankle dorsiflexion and the knee extension peak torque were the major predictors of falls in older women, accounting for approximately 28% of the number of falls. Thus, these results further reveal the biomechanical parameters that affect the risk of falls and provide initial findings to support the prescription of exercises in fall prevention programs.
    Journal of electromyography and kinesiology: official journal of the International Society of Electrophysiological Kinesiology 06/2013; · 2.00 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this study was to compare the voluntary and evoked, absolute and normalized leg extension rates of torque development (RTD) and rates of rise in electromyography (RER) during commonly reported time intervals in young and old men. Fourteen young men (21.9±3.2years) and 16 older men (72.3±7.3years) completed three evoked and three voluntary isometric leg extension muscle actions to quantify absolute voluntary (peak, 30, 50, 100, and 200ms) and evoked (peak, 30, 50, and 100ms) RTD and RER. All RTD values were normalized (nRTD) to peak torque, while RER values were normalized (nRER) to peak-to-peak M-wave amplitude (MPP). Absolute voluntary RTDs and RERs were 58-122% and 70-76% greater (p≤0.05) for the young men, respectively. However, there were no age-related differences (p>0.05) for voluntary nRTDs, absolute and normalized evoked RTDs, or voluntary nRER. MPP and evoked RER and nRER were greater (p≤0.05) for the young men. In addition, voluntary RTD was more reliable in the young than the older men. Normalizing RTD to peak torque and RER to M-wave amplitude eliminated the age-related differences and suggested that the age-related declines in RTD and RER were a result of reduced muscle strength and M-wave amplitude, respectively. Therefore, our findings questioned the value of RTD and RER measurements in the various time intervals for explaining sarcopenia and suggested that maximal strength and M-wave amplitude may be sufficient.
    Experimental Gerontology 05/2014; · 3.91 Impact Factor