Article

Roles of toll-like receptors in C-C chemokine production by renal tubular epithelial cells.

Department of Internal Medicine, Division of Nephrology, Research Institute for Disease Mechanism and Control, Nagoya University Graduate School of Medicine, Nagoya, Japan.
The Journal of Immunology (Impact Factor: 5.36). 09/2002; 169(4):2026-33. DOI: 10.4049/jimmunol.169.4.2026
Source: PubMed

ABSTRACT Pyelonephritis, in which renal tubular epithelial cells are directly exposed to bacterial component, is a major predisposing cause of renal insufficiency. Although previous studies have suggested C-C chemokines are involved in the pathogenesis, the exact source and mechanisms of the chemokine secretion remain ambiguous. In this study, we evaluated the involvement of Toll-like receptors (TLRs) in C-C chemokine production by mouse primary renal tubular epithelial cells (MTECs). MTECs constitutively expressed mRNA for TLR1, 2, 3, 4, and 6, but not for TLR5 or 9. MTECs also expressed MD-2, CD14, myeloid differentiation factor 88, and Toll receptor-IL-1R domain-containing adapter protein/myeloid differentiation factor 88-adapter-like. Synthetic lipid A and lipoprotein induced monocyte chemoattractant protein 1 (MCP-1) and RANTES production in MTECs, which strictly depend on TLR4 and TLR2, respectively. In contrast, MTECs were refractory to CpG-oligodeoxynucleotide in chemokine production, consistently with the absence of TLR9. LPS-mediated MCP-1 and RANTES production in MTECs was abolished by NF-kappaB inhibition, but unaffected by extracellular signal-regulated kinase inhibition. In LPS-stimulated MTECs, inhibition of c-Jun N-terminal kinase and p38 mitogen-activated protein kinase significantly decreased RANTES, but did not affect MCP-1 mRNA induction. Thus, MTECs have a distinct expression pattern of TLR and secrete C-C chemokines in response to direct stimulation with a set of bacterial components.

Download full-text

Full-text

Available from: Takeshi Kikuchi, Jul 01, 2015
0 Followers
 · 
103 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CC chemokine (motif) ligand 4 (CCL4) is indispensable to the chemoattraction of macrophages, natural killer cells, and lymphocytes in mammals; however, it has only been cloned in a limited number of fish species and information related to its biofunction remains ambiguous with regard to teleosts. To explore the role of teleost CCL4, we first evaluated the mRNA expression of the Epinephelus coioides CCL4 (gCCL4) gene in various organs under LPS and poly (I:C) stimulated; secondary, we evaluated the immune-related genes expression of fish under the recombinant gCCL4 protein stimulated. Our results revealed an increase in the mRNA of gCCL4 in immune organs immediately following stimulation by poly (I:C); however, in LPS stimulated fish, the expression did not increase until nearly 24 h after induction. In biofunction assays, recombinant gCCL4 was found to induce chemotactic activity in the peripheral blood leukocytes of groupers and up-regulate the gene expressions of grouper TNFA1 (TNF-α1), TNFA2 (TNF-α2), IFNG (IFN-γ), MX, TBX21 (T-bet), CD8 (α and β chain). These findings indicate that grouper CCL4 attracts leukocytes, induces an inflammatory response, and drives lymphocyte differentiation into the Th1 pathway.
    Fish &amp Shellfish Immunology 10/2013; 35(6). DOI:10.1016/j.fsi.2013.09.020 · 3.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Urinary tract infections (UTIs), which are mainly due to uropathogenic Escherichia coli (UPEC), occur via the retrograde ascent of the bacteria along the urinary tract system. The adhesion and invasion mechanisms of UPEC have been extensively studied in bladder epithelial cells, but less is known about the role of renal tubule epithelial cells (RTEC) in renal antibacterial defences. This review considers recent advances in the understanding of the role of RTECs in inducing an innate immune response mediated by Toll-like receptors (TLRs) in experimental UTI. Collecting duct cells are a preferential site of adhesion of UPEC colonizing the kidneys. Epithelial TLR4 activation induces an inflammatory response and the recruitment of lipid rafts to the plasma membrane, both of which facilitate the transcytosis of non-cytolytic UPEC strains across intact collecting duct cell layers to invade the renal interstitium. Arginine vasopressin, which regulates water absorption in the collecting duct, also acts as a potent modulator of the TLR4-mediated intrarenal innate response caused by UPEC. The role of epithelial TLR5 in renal host defences is also discussed. These findings highlight the role of RTECs in triggering the innate immune response in the context of ascending UTIs.
    Cellular Microbiology 05/2011; 13(8):1107-13. DOI:10.1111/j.1462-5822.2011.01614.x · 4.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Inflammatory (Ly6C(hi) CCR2+) monocytes provide defense against infections but also contribute to autoimmune diseases and atherosclerosis. Monocytes originate from bone marrow and their entry into the bloodstream requires stimulation of CCR2 chemokine receptor by monocyte chemotactic protein-1 (MCP1). How monocyte emigration from bone marrow is triggered by remote infections remains unclear. We demonstrated that low concentrations of Toll-like receptor (TLR) ligands in the bloodstream drive CCR2-dependent emigration of monocytes from bone marrow. Bone marrow mesenchymal stem cells (MSCs) and their progeny, including CXC chemokine ligand (CXCL)12-abundant reticular (CAR) cells, rapidly expressed MCP1 in response to circulating TLR ligands or bacterial infection and induced monocyte trafficking into the bloodstream. Targeted deletion of MCP1 from MSCs impaired monocyte emigration from bone marrow. Our findings suggest that bone marrow MSCs and CAR cells respond to circulating microbial molecules and regulate bloodstream monocyte frequencies by secreting MCP1 in proximity to bone marrow vascular sinuses.
    Immunity 03/2011; 34(4):590-601. DOI:10.1016/j.immuni.2011.02.016 · 19.75 Impact Factor