Mass-independent fractionation of oxygen isotopes during thermal decomposition of carbonates.

Planetary and Space Sciences Research Institute, The Open University, Walton Hall, Milton Keynes MK7 6AA, United Kingdom.
Proceedings of the National Academy of Sciences (Impact Factor: 9.74). 09/2002; 99(17):10988-93. DOI: 10.1073/pnas.172378499
Source: PubMed

ABSTRACT Nearly all chemical processes fractionate 17O and 18O in a mass-dependent way relative to 16O, a major exception being the formation of ozone from diatomic oxygen in the presence of UV radiation or electrical discharge. Investigation of oxygen three-isotope behavior during thermal decomposition of naturally occurring carbonates of calcium and magnesium in vacuo has revealed that, surprisingly, anomalous isotopic compositions are also generated during this process. High-precision measurements of the attendant three-isotope fractionation line, and consequently the magnitude of the isotopic anomaly (delta17O), demonstrate that the slope of the line is independent of the nature of the carbonate but is controlled by empirical factors relating to the decomposition procedure. For a slope identical to that describing terrestrial silicates and waters (0.5247 +/- 0.0007 at the 95% confidence level), solid oxides formed during carbonate pyrolysis fit a parallel line offset by -0.241 +/- 0.042 per thousand. The corresponding CO2 is characterized by a positive offset of half this magnitude, confirming the mass-independent nature of the fractionation. Slow, protracted thermolysis produces a fractionation line of shallower slope (0.5198 +/- 0.0007). These findings of a 17O anomaly being generated from a solid, and solely by thermal means, provide a further challenge to current understanding of the nature of mass-independent isotopic fractionation.

  • [Show abstract] [Hide abstract]
    ABSTRACT: We present petrologic and Secondary Ion Mass Spectrometry (SIMS) oxygen isotope analyses of Ca-carbonate within a group of paired Antarctic CM2 chondrites. The carbonates can be grouped into two isotopically and morphologically distinct populations. Type 1 grains (small matrix grains) possess average δ18O of 33.7±2.3‰ (1σ) and average Δ17O of −0.81‰±0.90‰ (1σ). Type 2 grains (calcite aggregates) possess distinct oxygen isotopic compositions, average δ18O of 19.4‰±1.5‰ (1σ) and average Δ17O of −1.98±0.9‰ (1σ). These differences are interpreted to indicate that the two populations of calcite formed under different conditions at different times. The carbonates have textural features that suggest an extraterrestrial origin. The data presented here fall within error of a previously measured array for carbonates from CM falls (Benedix et al., 2003). The presence of two generations of carbonate suggests carbonate formation in two discrete events on the parent body of these meteorites. The oxygen isotopic data presented here deviate from prior bulk carbonate measurements undertaken for these meteorites. Most likely, this deviation is because bulk carbonate analyses included vein carbonate which formed during terrestrial weathering.
    Geochimica et Cosmochimica Acta 01/2012; · 3.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Oxygen triple isotope measurements can be used to calculate aquatic gross oxygen production rates. Past studies have emphasised the appropriate definition of the 17O excess and often used an approximation to derive production rates from the 17O excess. Here, I show that the calculation can be phrased more consistently and without any approximations using the relative 17O/16O and 18O/16O isotope ratio differences directly. The 17O excess is merely a mathematical construct and the derived production rate is independent of its definition, provided all calculations are performed with a consistent definition. I focus on the mixed layer, but also show how time series of triple oxygen measurements below the mixed layer can be used to derive gross production. In the calculation of mixed layer productivity, I explicitly include isotopic fractionation during gas invasion and evasion, which requires the oxygen supersaturation s to be measured as well. I also suggest how bubble injection could be considered in the same mathematical framework. I distinguish between concentration steady state and isotopic steady state and show that only the latter needs to be assumed in the calculation. It is even possible to derive an estimate of the net production rate in the mixed layer that is independent of the assumption of concentration steady state. I review measurements of the parameters required for the calculation of gross production rates and show how their systematic uncertainties as well as the use of different published calculation methods can cause large variations in the production rates for the same underlying isotope ratios. In particular, the 17O excess of dissolved O2 in equilibrium with atmospheric O2 and the 17O excess of photosynthetic O2 need to be re-measured. Because of these uncertainties, all calculation parameters should always be fully documented and the measured isotope ratio differences as well as the oxygen supersaturation should be permanently archived, so that improved measurements of the calculation parameters can be used to retrospectively improve production rates.
    Biogeosciences Discussions 01/2011;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Isotope fractionation resulting from gas diffusion along a thermal gradient has always been considered entirely mass-dependent. A previous report, however, showed that non-mass-dependent (17)O anomalies can be generated simply by subjecting O(2) gas in an enclosure to a thermal gradient. To explore the underlying mechanism for the anomalies, we tested the effect of gas pressure, duration of experiment, and geometry of the apparatus on the (17)O anomalies for O(2) as well as on the (33)S or (36)S anomalies for SF(6) gas. The results are consistent with our proposal that a previously ignored nuclear spin effect on gas diffusion coefficient may be largely responsible for generating the observed anomalies. This discovery provides clues to some of the puzzling non-mass-dependent isotope signatures encountered in experiments and in nature, including the triple oxygen or quadruple sulfur isotope heterogeneity in the solar system.
    Rapid Communications in Mass Spectrometry 03/2011; 25(6):765-73. · 2.51 Impact Factor

Full-text (2 Sources)

Available from
May 30, 2014