Calcium uptake and calcium transporter expression by trophoblast cells from human term placenta.

Laboratoire de Physiologie materno-foetale, Département des Sciences Biologiques, Université du Québec à Montréal, C.P. 8888, Succursale "Centre-Ville", Montreal, Quebec, Canada H3C 3P8.
Biochimica et Biophysica Acta (Impact Factor: 4.66). 09/2002; 1564(2):325-32. DOI:10.1016/S0005-2736(02)00466-2
Source: PubMed

ABSTRACT Placental transfer of maternal calcium (Ca(2+)) is a crucial step for fetal development although the biochemical mechanisms responsible for this process are largely unknown. This process is carried out in vivo by the placental syncytiotrophoblast layer. The aim of this study was to define the membrane gates responsible for the syncytiotrophoblast Ca(2+) entry, the first step in transplacental transfer. We have investigated the basal Ca(2+) uptake by primary culture of human term placenta syncytiotrophoblast. Kinetic studies revealed an active extracellular Ca(2+) uptake by cultured human syncytiotrophoblast. We demonstrated by Northern blot the presence of transcript for calcium transporter type 1 (CaT1) in cultured human syncytiotrophoblast and CaT1 expression was further confirmed by reverse transcription polymerase chain reaction (RT-PCR). In addition, the expression of calcium transporter type 2 (CaT2) was revealed by RT-PCR in cultured human syncytiotrophoblast. It has been reported that the activity of this family of Ca(2+) channels is voltage-independent, and is not sensitive to L-type Ca(2+) channels agonist and antagonist. Interestingly, modulation of membrane potential by extracellular high potassium concentration and valinomycin had no effect on the basal Ca(2+) uptake of human syncytiotrophoblast. Moreover, the addition of L-type Ca(2+) channel modulators (Bay K 8644 and nitrendipine) to the incubation medium had also no effect on the basal Ca(2+) uptake, suggesting that the process is mainly voltage-independent and does not involved L-type Ca(2+) channels. On the other hand, we observed that two known blockers of CaT-mediated Ca(2+) transport, namely extracellular magnesium (Mg(2+)) and ruthenium red, dose-dependently inhibited Ca(2+) uptake by cultured human syncytiotrophoblast. Therefore, our results suggest that basal Ca(2+) uptake of human syncytiotrophoblast may be assured by CaT1 and CaT2.

0 0
1 Bookmark
  • [show abstract] [hide abstract]
    ABSTRACT: TRPV5 and TRPV6 are unique members of the TRP super family. They are highly selective for Ca(2+) ions with multiple layers of Ca(2+)-dependent inactivation mechanisms, expressed at the apical membrane of Ca(2+) transporting epithelia, and robustly responsive to 1,25-dihydroxivitamin D(3). These features are well suited for their roles as Ca(2+) entry channels in the first step of transcellular Ca(2+) transport pathways, which are involved in intestinal absorption, renal reabsorption of Ca(2+), placental transfer of Ca(2+) to fetus, and many other processes. While TRPV6 is more broadly expressed in a variety of tissues such as esophagus, stomach, small intestine, colon, kidney, placenta, pancreas, prostate, uterus, salivary gland, and sweat gland, TRPV5 expression is relatively restricted to the distal convoluted tubule and connecting tubule of the kidney. There is only one TRPV6-like gene in fish and birds in comparison to both TRPV5 and TRPV6 genes in mammals, indicating TRPV5 gene was likely generated from duplication of TRPV6 gene during the evolution of mammals to meet the needs of complex renal function. TRPV5 and TRPV6 are subjected to vigorous regulations under physiological, pathological, and therapeutic conditions. The elevated TRPV6 level in malignant tumors such as prostate and breast cancers makes it a potential therapeutic target. TRPV6, and to a lesser extent TRPV5, exhibit unusually high levels of single nucleotide polymorphisms (SNPs) in African populations as compared to other populations, indicating TRPV6 gene was under selective pressure during or after humans migrated out of Africa. The SNPs of TRPV6 and TRPV5 likely contribute to the Ca(2+) conservation mechanisms in African populations.
    Advances in experimental medicine and biology 01/2011; 704:239-75. · 1.83 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: BACKGROUND: Transient receptor potential channel type 6 (TRPV6) and Calbindin-D9k (CaBP-9 k) are involved in the active calcium (Ca2+) transport mechanism in many tissues including placenta and uterus, suggesting a role in the establishment and maintenance of pregnancy. Moreover, TRPV6 and CaBP-9 k seem to support the materno-fetal Ca2+ transport that is crucial for fetal Ca2+ homeostasis, bone growth and development. However, it is unknown if these proteins are also involved in the aetiology of pathologies associated with parturition in cows, such as retained fetal membranes (RFM). The aim of the current study was to create an expression profile of uterine and placentomal TRPV6 and CaBP-9 k mRNAs and proteins during pregnancy and postpartum in cows with and without fetal membrane release. METHODS: Uteri and placentomes of 27 cows in different stages of pregnancy and placentomes of cows with and without RFM were collected. Protein and mRNA expression of TRPV6 and CaBP-9 k was investigated by real-time PCR, immunohistochemistry and Western blot. RESULTS: In the uterine endometrium, highest TRPV6 and CaBP-9 k expression was found in the last trimester of pregnancy, with a particular increase of protein in the glandular epithelium. In the placentomes, a gradual increase in TRPV6 mRNA was detectable towards parturition, while protein expression did not change significantly. Placentomal CaBP-9 k expression did not change significantly throughout pregnancy but immunohistochemistry revealed an increase in staining intensity in the maternal crypt epithelium. Immunohistochemical, stronger placental CaBP-9 k signals were seen in animals with RFM compared to animals with an undisturbed fetal membrane release, while protein levels, measured by Western blot analyses did not change significantly. CONCLUSIONS: The results of the present study demonstrate a dynamic expression of TRPV6 and CaBP-9 k during pregnancy in the bovine uterine endometrium and placentomes, suggesting a functional role for these proteins in Ca2+ metabolism during pregnancy. The temporal and spatial expression patterns indicate that TRPV6 and CaBP-9 k may be involved in materno-fetal Ca2+ transport, mainly through an interplacentomal transport, and that both proteins may participate in physiological processes that are crucial for fetal and placental development. However, neither TRPV6 nor CaBP-9 k seem to be causative in the retention of fetal membranes.
    Reproductive Biology and Endocrinology 08/2012; 10(1):66. · 2.14 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The placenta is fundamental for fetal development. The aim of this study was to determine Ca, Fe, Cu, and Zn content in the fetal and maternal portions of the placentas of teenage and adult women. Measurement of the minerals was conducted using Synchrotron radiation total reflection X-ray fluorescence. Forty samples from the fetal portion of teenagers and adults and 40 samples from the maternal portion of teenagers and adults were analyzed. There were significant differences in the Ca and Cu concentrations of the placenta's maternal portion when compared to the fetal portion, for both teenagers and adults. There were differences in Fe and Zn concentrations only when comparing the maternal portion of placenta with the fetal portion of the adults. These results suggest important differences in mineral content based on the placental portion. No significant difference was observed between the minerals studied of the maternal portion of teenagers and adults; however, in the fetal portion, mineral concentrations were greater in adults than in teenagers. Therefore, the mineral concentration of the fetal portion of the placenta is influenced by the mother's age. If there is mineral's competition between the mother and fetus during pregnancy in adolescence due to the importance of these minerals in growth and development, then the mechanism and reason for it should be elucidated in future research. In addition, we believe that further research should be carried out on transporters of these minerals in the same portions of the placentas analyzed by our group, in teenagers and adults.
    Biological trace element research 01/2011; 143(3):1271-81. · 1.92 Impact Factor

Full-text (2 Sources)

Available from
Mar 13, 2014