Substrate conformational restriction and CD45-catalyzed dephosphorylation of tail tyrosine-phosphorylated Src protein.

Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
Journal of Biological Chemistry (Impact Factor: 4.65). 11/2002; 277(43):40428-33. DOI: 10.1074/jbc.M206467200
Source: PubMed

ABSTRACT Hydrolysis of the tail phosphotyrosine in Src family members is catalyzed by the protein-tyrosine phosphatase CD45, activating Src family-related signaling pathways. Using purified recombinant phospho-Src (P-Src) (amino acid residues 83-533) and purified recombinant CD45 catalytic (cytoplasmic) domain (amino acid residues 565-1268), we have analyzed the kinetic behavior of dephosphorylation. A time course of phosphatase activity showed the presence of a burst phase. By varying the concentration of P-Src, it was shown that the amplitude of this burst phase increased linearly with respect to P-Src concentration. Approximately 2% of P-Src was shown to be rapidly dephosphorylated followed by a slower linear phase. A P-Src protein substrate containing a functional point mutation in the Src homology domain 2 (SH2) led to more rapid dephosphorylation catalyzed by CD45, and this reaction showed only a single linear kinetic phase. These results were interpreted in terms of a model in which P-Src exists in a relatively slow dynamic equilibrium between "closed" and "open" conformational forms. Combined mutations in the SH2 and SH3 domain or the addition of an SH3 domain ligand peptide enhanced the accessibility of P-Src to CD45 by biasing P-Src to a more open form. Consistent with this model, a phosphotyrosine peptide that behaved as an SH2 domain binding ligand showed approximately 100-fold greater affinity for unphosphorylated Src versus P-Src. Surprisingly, P-Src possessing combined SH3 and SH2 functional inactivating point mutations was dephosphorylated by CD45 more slowly compared with P-Src completely lacking SH3 and SH2 domains. Additional data suggest that the SH3 and SH2 domains can inhibit accessibility of the P-Src tail to CD45 by interactions other than direct phosphotyrosine binding by the SH2 domain. Taken together, these results suggest how activation of Src family member signaling pathways by CD45 may be influenced by the presence or absence of ligand interactions remote from the tail.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: While the Src family of protein tyrosine kinases (SFK), and the main ancillary molecules involved in their regulation, have been studied for many years, the details of their interplay are not fully understood and thus remain under active investigation. Additionally, new players that coordinate their regulation and direct their signalling cascades are also being uncovered, shedding new light on the complexity of these signalling networks. Through the utilization of novel interaction assays, several new interconnecting mediators that are helping to show the elegance of Src family kinase regulation have been discovered. This review outlines SFK regulation, the discovery of the Csk binding protein (Phosphoprotein Associated with Glycosphingolipid-enriched microdomains, Cbp/PAG), and its role in regulating SFK kinase activity status, as well as protein levels. Further, details of the methods used to identify this dual mode of regulation can be applied to delineate the full gamut of SH2/SH3-directed SFK pathways and, indeed, those of any tyrosine kinase. Using Lyn as a model SFK, we and others have shown that Cbp recruits negative regulators of COOH-terminal Src kinase (Csk)/Csk-like protein-tyrosine kinase (Ctk) after Lyn is activated and bound to Cbp. Lyn phosphorylates Cbp on multiple tyrosine residues, including two that can bind Lyn's SH2 domain with high affinity. Lyn also phosphorylates Y314, which recruits Csk/Ctk to phosphorylate Lyn at its Y508 negative site, allowing an inactive conformation to form. However, the pY508 site has a low affinity for Lyn's SH2 domain, while the Cbp sites have high affinity. Thus, until these Cbp sites are dephosphorylated, Lyn can remain active. Intriguingly, phosphorylated Y314 also binds the suppressor of cytokine signalling 1 (SOCS1), resulting in elevated ubiquitination and degradation of Lyn. Thus, a single phosphotyrosine residue within Cbp co-ordinates a two-phase process involving distinct negative regulatory pathways that allow inactivation, followed by degradation, of SFKs.
    Biochimica et Biophysica Acta 02/2008; 1784(1):56-65. · 4.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Src-family kinases (SFKs) are protooncogenic enzymes controlling mammalian cell growth and proliferation. The activity of SFKs is primarily regulated by two tyrosine phosphorylation sites: autophosphorylation of a conserved tyrosine (Y(A)) in the kinase domain results in activation while phosphorylation of the regulatory tyrosine (Y(T)) near the C-terminus leads to inactivation. The phosphorylated Y(T) (pY(T)) engages in intramolecular interactions that stabilise the inactive conformation of SFKs. These inhibitory intramolecular interactions include the binding of pY(T) to the SH2 domain and the binding of the SH2-kinase linker to the SH3 domain. Thus, SFKs are active upon (i) disruption of the inhibitory intramolecular interactions, (ii) autophosphorylation of Y(A) and/or (iii) dephosphorylation of pY(T). Since aberrant activation of SFKs contributes to cancer, SFKs in normal cells are kept inactive by multiple endogenous inhibitors classified as catalytic and non-catalytic inhibitors. The catalytic inhibitors include C-terminal Src kinase (CSK) and CSK-homologous kinase (CHK) that phosphorylate Y(T) of SFKs, as well as the protein tyrosine phosphatases that dephosphorylate pY(A) of the activated SFKs. The non-catalytic inhibitors inactivate SFKs by direct binding. CHK is unique among these inhibitors because it employs both catalytic and non-catalytic mechanisms to inhibit SFKs. Other known non-catalytic inhibitors include WASP, caveolin and RACK1, which function to down-regulate SFKs in specific subcellular locations. This review discusses how the various endogenous SFK inhibitors cooperate to regulate SFKs in normal cells. As chemical compounds that can selectively inhibit SFKs in vivo are potential anti-cancer therapeutics, this review also discusses how investigation into the inhibitory mechanisms of the endogenous inhibitors will benefit the design and screening of these compounds.
    Biochimica et Biophysica Acta 01/2006; 1754(1-2):210-20. · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The association of the SH3 (Src homology 3) domain of SFKs (Src family kinases) with protein partners bearing proline-rich motifs has been implicated in the regulation of SFK activity, and has been described as a possible mechanism of relocalization of SFKs to subcellular compartments. We demonstrate in the present study for the first time that p13, an accessory protein encoded by the HTLV-1 (human T-cell leukaemia virus type 1), binds the SH3 domain of SFKs via its C-terminal proline-rich motif, forming a stable heterodimer that translocates to mitochondria by virtue of its N-terminal mitochondrial localization signal. As a result, the activity of SFKs is dramatically enhanced, with a subsequent increase in mitochondrial tyrosine phosphorylation, and the recognized ability of p13 to insert itself into the inner mitochondrial membrane and to perturb the mitochondrial membrane potential is abolished. Overall, the present study, in addition to confirming that the catalytic activity of SFKs is modulated by interactors of their SH3 domain, leads us to hypothesize a general mechanism by which proteins bearing a proline-rich motif and a mitochondrial localization signal at the same time may act as carriers of SFKs into mitochondria, thus contributing to the regulation of mitochondrial functions under various pathophysiological conditions.
    Biochemical Journal 07/2011; 439(3):505-16. · 4.65 Impact Factor