Article

New genes involved in cancer identified by retroviral tagging.

Mouse Cancer Genetics Program, National Cancer Institute, Frederick, Maryland 21702, USA.
Nature Genetics (Impact Factor: 29.65). 10/2002; 32(1):166-74. DOI: 10.1038/ng949
Source: PubMed

ABSTRACT Retroviral insertional mutagenesis in BXH2 and AKXD mice induces a high incidence of myeloid leukemia and B- and T-cell lymphoma, respectively. The retroviral integration sites (RISs) in these tumors thus provide powerful genetic tags for the discovery of genes involved in cancer. Here we report the first large-scale use of retroviral tagging for cancer gene discovery in the post-genome era. Using high throughput inverse PCR, we cloned and analyzed the sequences of 884 RISs from a tumor panel composed primarily of B-cell lymphomas. We then compared these sequences, and another 415 RIS sequences previously cloned from BXH2 myeloid leukemias and from a few AKXD lymphomas, against the recently assembled mouse genome sequence. These studies identified 152 loci that are targets of retroviral integration in more than one tumor (common retroviral integration sites, CISs) and therefore likely to encode a cancer gene. Thirty-six CISs encode genes that are known or predicted to be genes involved in human cancer or their homologs, whereas others encode candidate genes that have not yet been examined for a role in human cancer. Our studies demonstrate the power of retroviral tagging for cancer gene discovery in the post-genome era and indicate a largely unrecognized complexity in mouse and presumably human cancer.

Full-text

Available from: Herbert C Morse, May 21, 2015
0 Followers
 · 
130 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: We performed a genome-scale shRNA screen for modulators of B-cell leukemia progression in vivo. Results from this work revealed dramatic distinctions between the relative effects of shRNAs on the growth of tumor cells in culture versus in their native microenvironment. Specifically, we identified many "context-specific" regulators of leukemia development. These included the gene encoding the zinc finger protein Phf6. While inactivating mutations in PHF6 are commonly observed in human myeloid and T-cell malignancies, we found that Phf6 suppression in B-cell malignancies impairs tumor progression. Thus, Phf6 is a "lineage-specific" cancer gene that plays opposing roles in developmentally distinct hematopoietic malignancies. © 2015 Meacham et al.; Published by Cold Spring Harbor Laboratory Press.
    Genes & Development 03/2015; 29(5):483-8. DOI:10.1101/gad.254151.114 · 12.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: DNA is packaged together with proteins, such as histones, in the nucleus of a cell to form a fiber called chromatin. The nature of this packaging, the "chromatin structure", is essential for proper cell functioning. This is illustrated by the fact that perturbating chromatin can be associated with many diseases. Hence, artificial perturbation of chromatin may give important new insights into its function. In this dissertation, we have perturbed chromatin by 1) inducing mutations by integrating retroviruses and transposons into DNA, and 2) evicting histones from chromatin and inducing DNA breaks, by the application of anti-cancer drugs. As means of perturbing chromatin, DNA integrating elements such as retroviruses and transposons are used in gene regulation and cancer research, among others. In cancer research, DNA integrating elements are used for detecting cancer genes from tumor screens. We presented a novel algorithm that fully automates this detection, thus removing any potential for bias induced by manual analysis. In gene regulation, DNA integrating elements can be used for studying the chromatin position effect by the location-dependent activation of transgenes present within randomly integrated transposons. We presented a high-throughput method for studying the chromatin position effect using DNA integrating elements, and studied genome-wide transgene expression values generated using this method, especially in relation to enhancers and domains associated with the nuclear lamina. For both applications of DNA integrating elements, it is important to realize that integrations are randomly, but not uniformly randomly, distributed across the genome. For this purpose, we generated large datasets of integrations that were under minimal selective pressure, for two transposons and one retrovirus. We compared the integration profiles with a wide range of (epi)genomic features to generate bias maps across multiple genomic scales. This revealed a hierarchical organization in target site selection, and showed that a substantial fraction of cancer genes retrieved from tumor screens may be false positives. The application of anti-cancer drugs to directly perturb chromatin structure allowed us to take a very low-level approach in studying chromatin. We showed that different drugs target different types of chromatin in evicting histones from chromatin and/or inducing DNA breaks, which can have implications for their chemotherapeutic efficacy. Central themes throughout this dissertation were computational epigenomics and data integration. Due to the complexity of the biology and the data, many of the computational methods were highly customized. Some are more generally applicable. Examples include a method for the normalization of genome-wide sequencing data with control, and a feature ranking method. However, in general high levels of customization are unavoidable. Therefore, as a conclusion, the careful consideration that must go into decisions regarding this customization was illustrated by demonstrating the substantial impact that these decisions can have on research outcomes.
    03/2015, Degree: PhD, Supervisor: Prof. Dr. L.F.A. Wessels
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The mouse gammaretroviruses associated with leukemogenesis are found in the classical inbred mouse strains and in house mouse subspecies as infectious exogenous viruses (XRVs) and as endogenous retroviruses (ERVs) inserted into their host genomes. There are three major mouse leukemia virus (MuLV) subgroups in laboratory mice: ecotropic, xenotropic, and polytropic. These MuLV subgroups differ in host range, pathogenicity, receptor usage and subspecies of origin. The MuLV ERVs are recent acquisitions in the mouse genome as demonstrated by the presence of many full-length nondefective MuLV ERVs that produce XRVs, the segregation of these MuLV subgroups into different house mouse subspecies, and by the positional polymorphism of these loci among inbred strains and individual wild mice. While some ecotropic and xenotropic ERVs can produce XRVs directly, others, especially the pathogenic polytropic ERVs, do so only after recombinations that can involve all three ERV subgroups. Here, I describe individual MuLV ERVs found in the laboratory mice, their origins and geographic distribution in wild mouse subspecies, their varying ability to produce infectious virus and the biological consequences of this expression.
    Viruses 01/2014; 7(1):1-26. DOI:10.3390/v7010001 · 3.28 Impact Factor