Correlates of developmental cell death in Dictyostelium discoideum.

Indian Institute of Science, Bangalore, India.
Differentiation (Impact Factor: 2.84). 09/2002; 70(6):272-81. DOI: 10.1046/j.1432-0436.2002.700605.x
Source: PubMed

ABSTRACT We have studied the correlates of cell death during stalk cell differentiation in Dictyostelium discoideum. Our main findings are four. (i) There is a gradual increase in the number of cells with exposed phosphatidyl serine residues, an indicator of membrane asymmetry loss and increased permeability. Only presumptive stalk cells show this change in membrane asymmetry. Cells also show an increase in cell membrane permeability under conditions of calcium-induced stalk cell differentiation in cell monolayers. (ii) There is a gradual fall in mitochondrial membrane potential during development, again restricted to the presumptive stalk cells. (iii) The fraction of cells showing caspase-3 activity increases as development proceeds and then declines in the terminally differentiated fruiting body. (iv) There is no internucleosomal cleavage of DNA, or DNA fragmentation, in D. discoideum nor is there any calcium- and magnesium-dependent endonucleolytic activity in nuclear extracts from various developmental stages. However, nuclear condensation and peripheralization does occur in stalk cells. Thus, cell death in D. discoideum shows some, but not all, features of apoptotic cell death as recognized in other multicellular systems. These findings argue against the emergence of a single mechanism of 'programmed cell death (PCD)' before multicellularity arose during evolution.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Paraptosis is mediated by several proteins, poly(ADP-ribose) polymerase being one of them. D. discoideum lacks caspases thus providing a better system to dissect out the role of PARP in paraptosis. The cell death phenotype in unicellular eukaryote, D. discoideum is similar to the programmed cell death phenotype of multicellular animals. However, the events downstream to the death signal of PCD in D. discoideum are yet to be understood. Our results emphasize that oxidative stress in D. discoideum lacking caspases leads to PARP activation, mitochondrial membrane potential changes, followed by the release of apoptosis inducing factor from mitochondria. AIF causes large scale DNA fragmentation, a hallmark feature of paraptosis. The role of PARP in paraptosis is reiterated via PARP inhibition by benzamide, PARG inhibition by gallotannin and PARP down-regulation, which delays paraptosis. PARP, PARG and AIF interplay is quintessential in paraptosis of D. discoideum. This is the first report to establish the involvement of PARP in the absence of caspase activity in D. discoideum which could be of evolutionary significance and gives a lead to understand the caspase independent paraptotic mechanism in higher organisms.
    Apoptosis 10/2013; DOI:10.1007/s10495-013-0920-9 · 3.61 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Trypanosoma brucei est l’un des plus anciens organismes à posséder de véritables mitochondries. Contrairement aux autres eucaryotes, il ne contient qu’une seule de ces organelles. Cette caractéristique unique fait de T. brucei un excellent système pour étudier certains aspects spécifiques de la biologie mitochondriale. Dans la première partie de cette thèse, nous avons utilisé T. brucei comme modèle afin d’étudier les mécanismes de l’apoptose des cellules mammifères. En plus de la présence d’une mitochondrie unique, aucun composant du processus conventionnel de l’apoptose n’est présent chez les trypanosomes. Grâce à ces deux caractéristiques, nous avons pu séparer dans le temps les trois événements majeurs liés à la mitochondrie qui sont induits par l’expression de la protéine pro-apoptotique Bax pendant l’apoptose. Tout d’abord, le cytochrome c est libéré de l’espace intermembranaire mitochondrial. Suivent ensuite la perte du potentiel de membrane et finalement la fragmentation de la mitochondrie. Il est intéressant de voir que tous ces événements sont réversibles si Bax est retiré du milieu. Les deux sections suivantes de la thèse se focalisent sur le mécanisme régulant la division des mitochondries chez T. brucei. Les protéines impliquées dans ce processus ont été bien conservées durant l’évolution et on trouve deux d’entre elles dans le génome de T. brucei. Les protéines similaires aux dynamines (DLP, pour dynamin-like protein) sont en général impliquées dans le mécanisme de division des mitochondries. Nous avons découvert que chez T. brucei, l’unique DLP présente est aussi requise pour l’endocytose, un processus qui est normalement effectué par les dynamines « classiques », absentes dans cet organisme. La localisation intracellulaire a révélé la présence de DLP à deux endroits spécifiques, ce qui confirme cette double fonction. De plus, nous avons démontré que la division des mitochondries est essentielle pour l’accomplissement de la cytokinèse chez T. brucei. Ce dernier point suggère que la division des mitochondries pourrait être un point de contrôle pour la progression du cycle cellulaire. Finalement, nous avons également identifié un homologue potentiel de Fis1 chez T. brucei. Trypanosoma brucei is one of the earliest diverging eukaryotes with a bona fide mitochondrion. In contrast to most other eukaryotes, it has a single mitochondrion only which shows a large network-like morphology. This unique feature makes T. brucei an excellent model to study some unique aspects of mitochondrial biology. In the first part of this thesis, we used T. brucei as a model to study the mechanisms of mammalian apoptosis. Additionally to the one unit characteristic of its mitochondrion, the trypanosomes lack all components of the “classical” apoptotic machinery. Because of these two unique features, we were able to temporally separate the three major mitochondrial events that are induced by Bax expression during apoptosis. First, cytochrome c is released from the mitochondrial intermembrane space. This event is followed by a loss of the membrane potential and finally by mitochondrial fragmentation. Interestingly, all these events are reversible when Bax is removed. The next two sections of the thesis focus on the mechanism of division of the mitochondrion in T. brucei. The proteins involved in this process are well conserved and two of them are found in the genome of T. brucei. We show that the single dynamin-like protein (TbDLP), normally specialized in mitochondrial fission, is not only involved in mitochondrial division, but also required for endocytosis, a process normally mediated by classical dynamins which are absent in T. brucei. The two specific intracellular localizations of TbDLP confirm the dual function of this protein. Moreover, we showed that mitochondrial fission is required for the completion of cytokinesis in T. brucei, suggesting that mitochondrial fission might be a checkpoint for cell division. Finally, we have also identified the putative Fis1 homologue of T. brucei. Generally in eukaryotes, the mitochondrial DNA is distributed all over the matrix. However in T. brucei, it is restricted to a discrete structure termed the kinetoplast (or kDNA). In the last part of this thesis we show that TbMiX, a protein of the outer mitochondrial membrane, is essential for the correct positioning of the kDNA. Moreover, we present evidence that this protein may link the mitochondrion to the subpellicular cytoskeleton of T. brucei, suggesting that the microtubules present in this structure are required to determine the position of the kDNA.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Using the chirp technique with high frequency (210 to 760 khz) supersonic waves, we have explored the possibility of measuring high resolution bulk density profiles of marine sediments. Results from laboratory experiments on four different sediments clearly show the gradient of possible bulk density profiles. Coarse granular sediment beds consolidate fast and have a relatively uniform density within the bed. A sharp gradient of bulk density near the sediment surface can be observed in the very early stages of consolidation. Clayey sediment beds show very different rates of consolidation among each other. The density gradient is usually rather uniform near the surface, however, it increases significantly near the bottom.


1 Download
Available from