Article

Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy.

Institute for Human Gene Therapy and Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 10/2002; 99(18):11854-9. DOI: 10.1073/pnas.182412299
Source: PubMed

ABSTRACT Tissues from rhesus monkeys were screened by PCR for the presence of sequences homologous to known adeno-associated virus (AAV) serotypes 1-6. DNA spanning entire rep-cap ORFs from two novel AAVs, called AAV7 and AAV8, were isolated. Sequence comparisons among these and previously described AAVs revealed the greatest divergence in capsid proteins. AAV7 and AAV8 were not neutralized by heterologous antisera raised to the other serotypes. Neutralizing antibodies to AAV7 and AAV8 were rare in human serum and, when present, were low in activity. Vectors formed with capsids from AAV7 and AAV8 were generated by using rep and inverted terminal repeats (ITRs) from AAV2 and were compared with similarly constructed vectors made from capsids of AAV1, AAV2, and AAV5. Murine models of skeletal muscle and liver-directed gene transfer were used to evaluate relative vector performance. AAV7 vectors demonstrated efficiencies of transgene expression in skeletal muscle equivalent to that observed with AAV1, the most efficient known serotype for this application. In liver, transgene expression was 10- to 100-fold higher with AAV8 than observed with other serotypes. This improved efficiency correlated with increased persistence of vector DNA and higher number of transduced hepatocytes. The efficiency of AAV8 vector for liver-directed gene transfer of factor IX was not impacted by preimmunization with the other AAV serotypes. Vectors based on these novel, nonhuman primate AAVs should be considered for human gene therapy because of low reactivity to antibodies directed to human AAVs and because gene transfer efficiency in muscle was similar to that obtained with the best known serotype, whereas, in liver, gene transfer was substantially higher than previously described.

0 Followers
 · 
102 Views
  • Journal of the American Society of Nephrology 04/2003; 14(4):947-958. DOI:10.1097/01.ASN.0000057858.45649.F7 · 9.47 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Gene delivery vectors based on adeno-associated viruses (AAV) have exhibited promise in both preclinical disease models and human clinical trials for numerous disease targets, including the retinal degenerative disorders Leber's congenital amaurosis and choroideremia. One general challenge for AAV is that preexisting immunity, as well as subsequent development of immunity following vector administration, can severely inhibit systemic AAV vector gene delivery. However, the role of neutralizing antibodies (NABs) in AAV transduction of tissues considered to be immune privileged, such as the eye, is unclear in large animals. Intravitreal AAV administration allows for broad retinal delivery, but is more susceptible to interactions with the immune system than subretinal administration. To assess the effects of systemic anti-AAV antibody levels on intravitreal gene delivery, we quantified the anti-AAV antibodies present in sera from non-human primates before and after intravitreal injections with various AAV capsids. Analysis showed that intravitreal administration resulted in an increase in anti-AAV antibodies regardless of the capsid serotype, transgene or dosage of virus injected. For monkeys injected with wild-type AAV2 and/or an AAV2 mutant, the variable that most significantly affected the production of anti-AAV2 antibodies was the amount of virus delivered. In addition, post-injection antibody titers were highest against the serotype administered, but the antibodies were also cross-reactive against other AAV serotypes. Furthermore, NAB levels in serum correlated with those in vitreal fluid, demonstrating both that this route of administration exposes AAV capsid epitopes to the adaptive immune system and that serum measurements are predictive of vitreous fluid NAB titers. Moreover, the presence of preexisting NAB titers in the serum of monkeys correlated strongly (R=0.76) with weak, decaying or no transgene expression following intravitreal administration of AAV. Investigating anti-AAV antibody development will aid in understanding the interactions between gene therapy vectors and the immune system during ocular administration and can form a basis for future clinical studies applying intravitreal gene delivery.Gene Therapy advance online publication, 11 December 2014; doi:10.1038/gt.2014.115.
    Gene Therapy 12/2014; 22(2). DOI:10.1038/gt.2014.115 · 4.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: As a promising strategy to aid or replace tissue/organ transplantation, gene delivery has been used for regenerative medicine applications to create or restore normal function at the cell and tissue levels. Gene delivery has been successfully performed ex vivo and in vivo in these applications. Excellent proliferation capabilities and differentiation potentials render certain cells as excellent candidates for ex vivo gene delivery for regenerative medicine applications, which is why multipotent and pluripotent cells have been intensely studied in this vein. In this review, gene delivery is discussed in detail, along with its applications to tissue engineering and regenerative medicine. A definition of a stem cell is compared to a definition of a stem property, and both provide the foundation for an in-depth look at gene delivery investigations from a germ lineage angle.
    Journal of Biomedical Materials Research Part B Applied Biomaterials 12/2014; DOI:10.1002/jbm.b.33354 · 2.33 Impact Factor

Full-text (2 Sources)

Download
93 Downloads
Available from
Jun 3, 2014