Article

Chk2 is a tumor suppressor that regulates apoptosis in both an ataxia telangiectasia mutated (ATM)-dependent and an ATM-independent manner.

Department of Medical Biophysics, Ontario Cancer Institute, University of Toronto, Ontario M5G 2C1, Canada.
Molecular and Cellular Biology (Impact Factor: 5.37). 10/2002; 22(18):6521-32. DOI: 10.1128/MCB.22.18.6521-6532.2002
Source: PubMed

ABSTRACT In response to ionizing radiation (IR), the tumor suppressor p53 is stabilized and promotes either cell cycle arrest or apoptosis. Chk2 activated by IR contributes to this stabilization, possibly by direct phosphorylation. Like p53, Chk2 is mutated in patients with Li-Fraumeni syndrome. Since the ataxia telangiectasia mutated (ATM) gene is required for IR-induced activation of Chk2, it has been assumed that ATM and Chk2 act in a linear pathway leading to p53 activation. To clarify the role of Chk2 in tumorigenesis, we generated gene-targeted Chk2-deficient mice. Unlike ATM(-/-) and p53(-/-) mice, Chk2(-/-) mice do not spontaneously develop tumors, although Chk2 does suppress 7,12-dimethylbenzanthracene-induced skin tumors. Tissues from Chk2(-/-) mice, including those from the thymus, central nervous system, fibroblasts, epidermis, and hair follicles, show significant defects in IR-induced apoptosis or impaired G(1)/S arrest. Quantitative comparison of the G(1)/S checkpoint, apoptosis, and expression of p53 proteins in Chk2(-/-) versus ATM(-/-) thymocytes suggested that Chk2 can regulate p53-dependent apoptosis in an ATM-independent manner. IR-induced apoptosis was restored in Chk2(-/-) thymocytes by reintroduction of the wild-type Chk2 gene but not by a Chk2 gene in which the sites phosphorylated by ATM and ataxia telangiectasia and rad3(+) related (ATR) were mutated to alanine. ATR may thus selectively contribute to p53-mediated apoptosis. These data indicate that distinct pathways regulate the activation of p53 leading to cell cycle arrest or apoptosis.

0 Bookmarks
 · 
69 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genetic errors in meiosis can lead to birth defects and spontaneous abortions. Checkpoint mechanisms of hitherto unknown nature eliminate oocytes with unrepaired DNA damage, causing recombination-defective mutant mice to be sterile. Here, we report that checkpoint kinase 2 (Chk2 or Chek2), is essential for culling mouse oocytes bearing unrepaired meiotic or induced DNA double-strand breaks (DSBs). Female infertility caused by a meiotic recombination mutation or irradiation was reversed by mutation of Chk2. Both meiotically programmed and induced DSBs trigger CHK2-dependent activation of TRP53 (p53) and TRP63 (p63), effecting oocyte elimination. These data establish CHK2 as essential for DNA damage surveillance in female meiosis and indicate that the oocyte DSB damage response primarily involves a pathway hierarchy in which ataxia telangiectasia and Rad3-related (ATR) signals to CHK2, which then activates p53 and p63.
    Science 01/2014; 343(6170):533-536. · 31.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study aimed to test whether induction of apoptosis following ex vivo X-irradiation of unstimulated blood lymphocytes correlated with clinical radiosensitivity and DNA double-strand break (DSB) repair in breast radiotherapy patients and healthy volunteers. Using small molecule inhibitors, the relationship between DSB repair and radiation-induced apoptosis was examined. Sixteen breast cancer patients with minimal (controls, n = 8) or extremely marked late radiation-induced change (cases, n = 8) and eight healthy volunteers were selected. DSBs were quantified by γH2AX/53BP1 immunofluorescence, and apoptosis was measured using a fluorogenic inhibitor of caspases assay. Mean γH2AX/53BP1 focus levels 24 h after exposure to 4 Gy were higher in cases (12.7 foci per cell) than in controls (10.3 foci per cell, p = 0.002). In contrast, the mean apoptotic fraction 48 h after 8 Gy was comparable, 37.2 % in cases and 34.7 % in controls (p = 0.442). Residual focus and apoptosis levels were not correlated within individuals (Spearman's R = -0.0059, p = 0.785). However, cells treated with DNA-PK inhibitor Nu7441 had higher focus and apoptosis levels 48 h after 1 Gy compared to mock-treated cells, suggesting that apoptosis induction following irradiation is modulated by DSB repair. This effect required functional ATM since cells treated simultaneously with Nu7441 and the ATM inhibitor Ku55933 were resistant to apoptosis despite high levels of residual foci. One clinical case displayed an impaired DNA-PK-dependent end-joining cellular phenotype. In summary, clinical radiosensitivity may be associated with impaired DSB repair in some patients. Although pharmaceutical inhibition of ATM and DNA-PK affected apoptosis induction and DSB repair, no association was observed between apoptosis and residual focus levels in patients and volunteers. http://www.springer.com/home?SGWID=0-0-1003-0-0&aqId=2632925&download=1&checkval=094e8514c01bd9cec0bec7aebe6085bc
    Biophysik 03/2014; · 1.70 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mammalian checkpoint kinases 1 and 2 (Chk1 and Chk2) are essential kinases that are involved in cell cycle checkpoint control, and the abrogation of either has been proposed as one way to sensitize cancer cells to DNA-damaging agents. However, it remains unclear which kinase is the most therapeutically relevant target, and whether multiple kinases might need to be targeted to achieve the best efficacy because of their overlapping substrate spectra and redundant functions. To clarify this issue, we established asynchronous cell cycle arrest models to investigate the therapeutic outcomes of silencing Chk1 and Chk2 in the presence of irradiation or cisplatin. Our results showed that Chk1- and Chk2-targeting small interference RNAs (siRNAs) demonstrated synergistic effects when both siRNAs were used simultaneously. Interestingly, Chk1 and Chk2 co-expression occurred in ∼90% of neoplastic tissues examined and showed no difference in neoplastic versus non-neoplastic tissues. Therefore, the selective targeting of Chk1 and Chk2 by oncolytic adenovirus mutants was chosen to treat resistant tumor xenograft mice, and the maximum antitumoral efficacy was achieved with the combined co-abrogation of Chk1 and Chk2 in the presence of low-dose cisplatin. This work deepens our understanding of novel strategies that target checkpoint pathways and contributes to the development of novel, potent and safe checkpoint abrogators.Cancer Gene Therapy (2014) 21, 209-217; doi:10.1038/cgt.2014.20; published online 23 May 2014.
    Cancer gene therapy 05/2014; · 3.13 Impact Factor

Full-text (2 Sources)

View
8 Downloads
Available from
May 28, 2014