Article

Neurotrophin-4: a survival factor for adult sensory neurons.

Growth Factor and Regeneration Group, Max Delbrück Institute for Molecular Medicine, D-13122, Berlin-Buch, Germany.
Current Biology (Impact Factor: 9.92). 09/2002; 12(16):1401-4.
Source: PubMed

ABSTRACT The nerve growth factor (NGF) family of neurotrophins provides a substantial part of the normal trophic support for sensory neurons during development. Although these neurotrophins, which include Brain-Derived Neurotrophic Factor (BDNF), Neurotrophin-3 (NT-3), and Neurotrophin-4 (NT-4), continue to be expressed into adulthood, there is little evidence that they are survival factors for adult neurons. Here we have examined the age-dependent neurotrophic requirements of a specialized type of mechanoreceptive neuron, called a D-hair receptor, in the dorsal root ganglion (DRG). Studies using knockout mice have demonstrated that the survival of D-hair receptors is dependent upon both NT-3 and NT-4. Here, we show that the time period when D-hair receptors require these two neurotrophins is different. Survival of D-hair receptors depends on NT-3 early in postnatal development and NT-4 later in the mature animal. The age-dependent loss of D-hair neurons in older NT-4 knockout mice was accompanied by a large reduction (78%) in neurons positive for the NT-4 receptor (trkB) together with neuronal apoptosis in the DRG. This is the first evidence that sensory neurons have a physiological requirement for a single neurotrophin for their continued survival in the adult.

Download full-text

Full-text

Available from: Cheryl Stucky, Mar 11, 2014
0 Followers
 · 
80 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Manipulation of neurotrophin (NT) signalling by administration or depletion of NTs, by transgenic overexpression or by deletion of genes coding for NTs and their receptors has demonstrated the importance of NT signalling for the survival and differentiation of neurons in sympathetic and dorsal root ganglia (DRG). Combination with mutation of the proapoptotic Bax gene allows the separation of survival and differentiation effects. These studies together with cell culture analysis suggest that NT signalling directly regulates the differentiation of neuron subpopulations and their integration into neural networks. The high-affinity NT receptors trkA, trkB and trkC are restricted to subpopulations of mature neurons, whereas their expression at early developmental stages largely overlaps. trkC is expressed throughout sympathetic ganglia and DRG early after ganglion formation but becomes restricted to small neuron subpopulations during embryogenesis when trkA is turned on. The temporal relationship between trkA and trkC expression is conserved between sympathetic ganglia and DRG. In DRG, NGF signalling is required not only for survival, but also for the differentiation of nociceptors. Expression of neuropeptides calcitonin gene-related peptide and substance P, which specify peptidergic nociceptors, depends on nerve growth factor (NGF) signalling. ret expression indicative of non-peptidergic nociceptors is also promoted by the NGF-signalling pathway. Regulation of TRP channels by NGF signalling might specify the temperature sensitivity of afferent neurons embryonically. The manipulation of NGF levels "tunes" heat sensitivity in nociceptors at postnatal and adult stages. Brain-derived neurotrophic factor signalling is required for subpopulations of DRG neurons that are not fully characterized; it affects mechanical sensitivity in slowly adapting, low-threshold mechanoreceptors and might involve the regulation of DEG/ENaC ion channels. NT3 signalling is required for the generation and survival of various DRG neuron classes, in particular proprioceptors. Its importance for peripheral projections and central connectivity of proprioceptors demonstrates the significance of NT signalling for integrating responsive neurons in neural networks. The molecular targets of NT3 signalling in proprioceptor differentiation remain to be characterized. In sympathetic ganglia, NGF signalling regulates dendritic development and axonal projections. Its role in the specification of other neuronal properties is less well analysed. In vitro analysis suggests the involvement of NT signalling in the choice between the noradrenergic and cholinergic transmitter phenotype, in the expression of various classes of ion channels and for target connectivity. In vivo analysis is required to show the degree to which NT signalling regulates these sympathetic neuron properties in developing embryos and postnatally.
    Cell and Tissue Research 05/2009; 336(3):349-84. DOI:10.1007/s00441-009-0784-z · 3.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A previous phase III clinical trial failed to show significant therapeutic benefit of repeated subcutaneous nerve growth factor (NGF) administration in the treatment of diabetic neuropathy. Animal studies have since shown that site-specific viral-mediated expression of NGF in the lumbar dorsal root ganglia prevents peripheral nerve dysfunction associated with chemically induced neuropathy. Using a Herpes simplex virus expression vector, we have investigated the effect of localized NGF expression in a genetic mouse model of progressive diabetic neuropathy, the +/+ Leprdb mouse. We found that site-specific delivery of NGF initially delayed the appearance of hypoalgesia, assessed by the Hargreaves test, by 1 month and effectively attenuated this deficit for 2 months over the approximately 10 months normal life-span of these animals. Once the disease progressed into its more severe stages, NGF, although still capable of altering the electrophysiological profile of the sensory A- and C-fibers and influencing the expression of p75 and substance P in the dorsal root ganglia, could no longer maintain normal nociception. These data suggest that maximal therapeutic benefit in future NGF-based gene therapy trials will be gained from early applications of such viral-mediated neurotrophin delivery.
    Experimental Neurology 04/2006; 198(1):260-70. DOI:10.1016/j.expneurol.2005.12.006 · 4.62 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Precise cell cycle regulation is critical for nervous system development. To assess the role of the cell cycle regulator, retinoblastoma (Rb) protein, in forebrain development, we studied mice with telencephalon-specific Rb deletions. We examined the role of Rb in neuronal specification and migration of diverse neuronal populations. Although layer specification occurred at the appropriate time in Rb mutants, migration of early-born cortical neurons was perturbed. Consistent with defects in radial migration, neuronal cell death in Rb mutants specifically affected Cajal-Retzius neurons. In the ventral telencephalon, although calbindin- and Lhx6-expressing cortical neurons were generated at embryonic day 12.5, their tangential migration into the neocortex was dramatically and specifically reduced in the mutant marginal zone. Cell transplantation assays revealed that defects in tangential migration arose owing to a cell-autonomous loss of Rb in migrating interneurons and not because of a defective cortical environment. These results revealed a cell-autonomous role for Rb in regulating the tangential migration of cortical interneurons. Taken together, we reveal a novel requirement for the cell cycle protein, Rb, in the regulation of neuronal migration.
    The EMBO Journal 01/2006; 24(24):4381-91. DOI:10.1038/sj.emboj.7600887 · 10.75 Impact Factor