Article

Werner AB, de Vries E, Tait SW, Bontjer I, Borst J.. TRAIL receptor and CD95 signal to mitochondria via FADD, caspase-8/10, Bid, and Bax but differentially regulate events downstream from truncated Bid. J Biol Chem 277: 40760-40767

Division of Cellular Biochemistry, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.
Journal of Biological Chemistry (Impact Factor: 4.57). 11/2002; 277(43):40760-7. DOI: 10.1074/jbc.M204351200
Source: PubMed

ABSTRACT The death receptor ligand TRAIL arouses much interest for clinical application. We found that TRAIL receptor could induce cytochrome c (Cyt c) release from mitochondria in cells that failed to respond to CD95. Therefore, we examined whether these two closely related death receptors use different intermediates to convey the apoptotic signal to mitochondria. Dominant negative FADD, FLIP(L), or a Bid mutant lacking cleavage sites for caspase-8/10 completely inhibited Cyt c release in response to either receptor. Depletion of Bid from TRAIL- or CD95-activated cytosols blocked their capacity to mediate Cyt c release from mitochondria in vitro, whereas Bax depletion reduced it. We conclude that FADD, caspase-8/10, and caspase-cleaved Bid are required for TRAIL receptor and CD95 signaling to mitochondria, whereas Bax is a common accessory. In vitro, caspase-8 treatment of cytosol from CD95-resistant cells permitted generation of truncated Bid and its association with mitochondria. However, this cytosol impaired the ability of truncated Bid to liberate Cyt c from exogenous mitochondria. We conclude that the TRAIL receptor can bypass or neutralize the activity of cytosolic factor that blocks truncated Bid function. This may benefit the capacity of TRAIL to break apoptosis resistance in tumor cells.

Download full-text

Full-text

Available from: Jannie Borst, Aug 29, 2015
1 Follower
 · 
66 Views
  • Source
    • "Caspase-8 can be activated downstream of caspase-9, through caspases-3 and -6, independently of death receptor signalling [17-19,23]. Furthermore, caspase-8 can amplify the death signal by activating the mitochondrial pathway through the cleavage of the BH3-only protein Bid [14,24-30]. Cleaved Bid (tBid) translocates to the mitochondria and then triggers mitochondrial depolarization, leading to cytochrome c release and subsequent caspase-9 activation, by which the activation of caspase-8 initiates a positive feedback loop that amplifies the mitochondrial pathway. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Caspase-8 is a key upstream mediator in death receptor-mediated apoptosis and also participates in mitochondria-mediated apoptosis via cleavage of proapoptotic Bid. However, the role of caspase-8 in p53- and p73-dependent apoptosis induced by genotoxic drugs remains unclear. We recently reported that the reconstitution of procaspase-8 is sufficient for sensitizing cisplatin- but not etoposide-induced apoptosis, in chemoresistant and caspase-8 deficient HOC313 head and neck squamous cell carcinoma (HNSCC) cells. We show that p53/p73-dependent caspase-8 activation is required for sensitizing etoposide-induced apoptosis by utilizing HOC313 cells carrying a temperature-sensitive p53G285K mutant. Restoration of wild-type p53 function under the permissive conditions, together with etoposide treatment, led to substantial transcriptional activation of proapoptotic Noxa and PUMA, but failed to induce apoptosis. In addition to p53 restoration, caspase-8 reconstitution was needed for sensitization to etoposide-induced apoptosis, mitochondria depolarization, and cleavage of the procaspases-3, and -9. In etoposide-sensitive Ca9-22 cells carrying a temperature-insensitive mutant p53, siRNA-based p73 knockdown blocked etoposide-induced apoptosis and procaspase-8 cleavage. However, induction of p73 protein and up-regulation of Noxa and PUMA, although observed in Ca9-22 cells, were hardly detected in etoposide-treated HOC313 cells under non-permissive conditions, suggesting a contribution of p73 reduction to etoposide resistance in HOC313 cells. Finally, the caspase-9 inhibitor Ac-LEHD-CHO or caspase-9 siRNA blocked etoposide-induced caspase-8 activation, Bid cleavage, and apoptosis in both cell lines, indicating that p53/p73-dependent caspase-8 activation lies downstream of mitochondria. we conclude that p53 and p73 can act as upstream regulators of caspase-8, and that caspase-8 is an essential mediator of the p53/p73-dependent apoptosis induced by etoposide in HNSCC cells. Our data suggest the importance of caspase-8-mediated positive feedback amplification in the p53/p73-dependent apoptosis induced by etoposide in HNSCC cells.
    Molecular Cancer 07/2011; 10:95. DOI:10.1186/1476-4598-10-95 · 5.40 Impact Factor
  • Source
    • "The BH3 family member Bid mediates the cross-talk between the extrinsic and intrinsic apoptotic pathways (Li et al., 1998). Earlier studies have shown that the overexpression of a dominant negative Bid construct inhibited apoptosis induced by both the Fas and TRAIL receptors in Jurkat cells (Werner et al., 2002), and Bid has been reported to regulate the synergy between TRAIL and epotoside in M28 and REN cells (Broaddus et al., 2005). We found that Bid is critical for FLIP silencing-induced processing of caspase 3 and cell death in the HCT116 and HT29 cells, indicating that mitochondrial activation is required for cell death to occur. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Death receptors can directly (type I cells) or indirectly induce apoptosis by activating mitochondrial-regulated apoptosis (type II cells). The level of caspase 8 activation is thought to determine whether a cell is type I or II, with type II cells less efficient at activating this caspase following death receptor activation. FLICE-inhibitory protein (FLIP) blocks death receptor-mediated apoptosis by inhibiting caspase 8 activation; therefore, we assessed whether silencing FLIP could convert type II cells into type I. FLIP silencing-induced caspase 8 activation in Bax wild-type and null HCT116 colorectal cancer cells; however, complete caspase 3 processing and apoptosis were only observed in Bax wild-type cells. Bax-null cells were also more resistant to chemotherapy and tumor necrosis factor-related apoptosis inducing ligand and, unlike the Bax wild-type cells, were not sensitized to these agents by FLIP silencing. Further analyses indicated that release of second mitochondrial activator of caspases from mitochondria and subsequent inhibition of X-linked inhibitor of apoptosis protein (XIAP) was required to induce full caspase 3 processing and apoptosis following FLIP silencing. These results indicate that silencing FLIP does not necessarily bypass the requirement for mitochondrial involvement in type II cells. Furthermore, targeting FLIP and XIAP may represent a therapeutic strategy for the treatment of colorectal tumors with defects in mitochondrial-regulated apoptosis.
    Oncogene 10/2008; 28(1):63-72. DOI:10.1038/onc.2008.366 · 8.56 Impact Factor
  • Source
    • "In humans, caspase 10 is closely related to caspase 8. They both have been reported to be recruited and activated upon activation of transmembrane receptors of the TNF receptor family (Kischkel et al., 2001; Werner et al., 2002). In melanoma cells, we show that caspase 10 is expressed but is not proteolytically processed upon TRAIL exposure. "
    [Show abstract] [Hide abstract]
    ABSTRACT: IGF1 plays a key role in the development and growth of multiple tumors and in the prevention of apoptosis. In melanoma cells, IGF1 has been shown to mediate resistance to anoikis-induced apoptosis. However, the effect of IGF1 on other proapoptotic stimuli has never been reported. Further, the molecular mechanisms by which IGF1 mediates its prosurvival properties in melanoma cells remain unknown. Here, we demonstrate that IGF1 impairs the onset of tumor necrosis factor-related apoptosis-inducing ligand and staurosporine-induced apoptosis in melanoma cells expressing either wild-type or oncogenic B-Raf. Further, we show that IGF1 inhibits mitochondrial damage that occurs during apoptosis, thereby indicating that IGF1 acts at the level of mitochondria to mediate its antiapoptotic stimuli. Accordingly, IGF1 increases the mRNA levels and protein expression of antiapoptotic members of the BCL2 family--BCL2 and BCL-X(L)--and that of the inhibitor of apoptosis protein, survivin. Further, their specific silencing by small interfering RNA prevents the protective effect of IGF1. These findings therefore delineate the molecular mechanisms by which IGF1 mediates its prosurvival properties and provide a basis for clinical strategies designed to neutralize IGF1 or its target genes.
    Journal of Investigative Dermatology 07/2008; 128(6):1499-505. DOI:10.1038/sj.jid.5701185 · 6.37 Impact Factor
Show more