Article

Purification and partial characterization of seven glutathione S-transferase isoforms from the clam Ruditapes decussatus.

UMR 1112 INRA-UNSA, Laboratoire Réponse des Organismes aux Stress Environnementaux, Faculté des Sciences, Université de Nice-Sophia Antipolis, Nice, France.
European Journal of Biochemistry (Impact Factor: 3.58). 10/2002; 269(17):4359-66. DOI: 10.1046/j.1432-1033.2002.03141.x
Source: PubMed

ABSTRACT This paper deals with the purification and the partial characterization of glutathione S-transferase (GST) isoforms from the clam Ruditapes decussatus. For the first step of purification, two affinity columns, reduced glutathione (GSH)-agarose and S-hexyl GSH-agarose, were mounted in series. Four affinity fractions were thus recovered. Further purification was performed using anion exchange chromatography. Seven fractions, which present a GST activity with 1-chloro-2,4-dinitrobenzene (CDNB) as substrate, were collected and analyzed by RP-HPLC. Seven distinct GST isoforms were purified, six of them were homodimers, the last one was a heterodimer consisting of the subunits 3 and 6. Kinetic parameters were studied. Results showed that isoforms have distinct affinity and Vmax for GSH and CDNB as substrates. The catalytic activity of the heterodimer isoform appeared to be a combination of the ability of each subunit. The immunological properties of each purified isoform were investigated using three antisera anti-pi, anti-mu and anti-alpha mammalian GST classes. Three isoforms (3-3, 6-6 and 3-6) seem to be closely related to the pi-class GST. Both isoforms 1-1 and 2-2 cross-reacted with antisera to pi and alpha classes and the isoform 5-5 cross-reacted with the antisera to mu and pi classes. Subunit 4 was recognized by the three antisera used, and its N-terminal amino acid analysis showed high identity (53%) with a conserved sequence of an alpha/m micro /pi GST from Fasciola hepatica.

0 Bookmarks
 · 
59 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Suspension-feeding bivalves are considered efficient toxin vectors with a relative insensitivity to toxicants compared to other aquatic organisms. This fact highlights the potential role of detoxification enzymes, such as glutathione transferases (GSTs), in this bivalve resistance. Nevertheless, the GST system has not been extensively described in these organisms. In the present study, cytosolic GSTs isoforms (cGST) were surveyed in three bivalves with different habitats and life strategies: Corbicula fluminea, Anodonta cygnea and Mytilus galloprovincialis. GSTs were purified by glutathione-agarose affinity chromatography, and the collection of expressed cGST classes of each bivalve were identified using a proteomic approach. All the purified extracts were also characterized kinetically. Results reveal variations in cGST subunits collection (diversity and properties) between the three tested bivalves. Using proteomics, four pi-class and two sigma-class GST subunits were identified in M. galloprovincialis. C. fluminea also yielded four pi-class and one sigma-class GST subunits. For A. cygnea, two mu-class and one pi-class GST subunits were identified, these being the first record of GSTs from these freshwater mussels. The affinity purified extracts also show differences regarding enzymatic behavior among species. The variations found in cGST collection and kinetics might justify diverse selective advantages for each bivalve organism.
    International Journal of Molecular Sciences 02/2014; 15(2):1887-900. · 2.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Given their global importance, coastal marine environments are a major focus of concern regarding the potential impacts of climate change, namely due to alterations in seawater salinity. It is known that environmental characteristics, such as salinity, affect immune and physiological parameters of bivalves. Nevertheless, scarce information is available concerning the biochemical alterations associated to salinity alterations. For this reason, the present work aimed to evaluate the biochemical responses of three venerid clam species (Venerupis decussata, V. corrugata, V. philippinarum) submitted to salinity changes. The effects on the native (V. decussata and V. corrugata) and invasive (V. philippinarum) species collected from the same sampling site and submitted to the same salinity gradient (0 to 42 g/L) were compared. The results obtained demonstrated that V. corrugata is the most sensitive species to salinity changes and V. decussata is the species that can tolerate a wider range of salinities. Furthermore, our work showed that clams under salinity associated stress can alter their biochemical mechanisms, such as increasing their antioxidant defenses, to cope with the higher oxidative stress resulting from hypo and hypersaline conditions. Among the physiological and biochemical parameters analysed (glycogen and protein content; lipid peroxidation levels, antioxidant enzymes activity; total, reduced and oxidized gluthatione) Catalase (CAT) and especially superoxide dismutase (SOD) showed to be useful biomarkers to assess salinity impacts in clams.
    Comparative Biochemistry and Physiology Part B Biochemistry and Molecular Biology 11/2014; · 1.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Polychaetes have been used as useful model organisms for environmental pollution monitoring in aquatic sediments. Here, we investigated the combined effect of copper (50, 100 and 200 μg/L) and cadmium (50 μg/L) on the expression of antioxidant enzymecoding genes (seven GST isoforms, Mn-SOD and Cu/Zn-SOD) in the marine polychaete Perinereis nuntia by quantitative real-time RT-PCR. As a result, SOD genes, especially Cu/Zn-SOD significantly increased up to 48 h after exposure to a mixture of Cu and Cd in a time and concentration-dependent manner more than in 50 μg/L Cd alone exposure. Similar expression patterns were observed in most GST isoforms. In particular, GST-omega and GST-sigma gene expression were highly upregulated in response to a combined stress of Cd and Cu. These findings suggest that such genes would be useful as a potential molecular biomarker for monitoring of combined environmental pollutions in aquatic ecosystem.
    Toxicology and Environmental Health Sciences. 01/2013; 5(1).

Preview

Download
1 Download