Purification and partial characterization of seven glutathione S-transferase isoforms from the clam Ruditapes decussatus.

UMR 1112 INRA-UNSA, Laboratoire Réponse des Organismes aux Stress Environnementaux, Faculté des Sciences, Université de Nice-Sophia Antipolis, Nice, France.
European Journal of Biochemistry (Impact Factor: 3.58). 10/2002; 269(17):4359-66. DOI: 10.1046/j.1432-1033.2002.03141.x
Source: PubMed

ABSTRACT This paper deals with the purification and the partial characterization of glutathione S-transferase (GST) isoforms from the clam Ruditapes decussatus. For the first step of purification, two affinity columns, reduced glutathione (GSH)-agarose and S-hexyl GSH-agarose, were mounted in series. Four affinity fractions were thus recovered. Further purification was performed using anion exchange chromatography. Seven fractions, which present a GST activity with 1-chloro-2,4-dinitrobenzene (CDNB) as substrate, were collected and analyzed by RP-HPLC. Seven distinct GST isoforms were purified, six of them were homodimers, the last one was a heterodimer consisting of the subunits 3 and 6. Kinetic parameters were studied. Results showed that isoforms have distinct affinity and Vmax for GSH and CDNB as substrates. The catalytic activity of the heterodimer isoform appeared to be a combination of the ability of each subunit. The immunological properties of each purified isoform were investigated using three antisera anti-pi, anti-mu and anti-alpha mammalian GST classes. Three isoforms (3-3, 6-6 and 3-6) seem to be closely related to the pi-class GST. Both isoforms 1-1 and 2-2 cross-reacted with antisera to pi and alpha classes and the isoform 5-5 cross-reacted with the antisera to mu and pi classes. Subunit 4 was recognized by the three antisera used, and its N-terminal amino acid analysis showed high identity (53%) with a conserved sequence of an alpha/m micro /pi GST from Fasciola hepatica.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Given their global importance, coastal marine environments are a major focus of concern regarding the potential impacts of climate change, namely due to alterations in seawater salinity. It is known that environmental characteristics, such as salinity, affect immune and physiological parameters of bivalves. Nevertheless, scarce information is available concerning the biochemical alterations associated to salinity alterations. For this reason, the present work aimed to evaluate the biochemical responses of three venerid clam species (Venerupis decussata, V. corrugata, V. philippinarum) submitted to salinity changes. The effects on the native (V. decussata and V. corrugata) and invasive (V. philippinarum) species collected from the same sampling site and submitted to the same salinity gradient (0 to 42 g/L) were compared. The results obtained demonstrated that V. corrugata is the most sensitive species to salinity changes and V. decussata is the species that can tolerate a wider range of salinities. Furthermore, our work showed that clams under salinity associated stress can alter their biochemical mechanisms, such as increasing their antioxidant defenses, to cope with the higher oxidative stress resulting from hypo and hypersaline conditions. Among the physiological and biochemical parameters analysed (glycogen and protein content; lipid peroxidation levels, antioxidant enzymes activity; total, reduced and oxidized gluthatione) Catalase (CAT) and especially superoxide dismutase (SOD) showed to be useful biomarkers to assess salinity impacts in clams.
    Comparative Biochemistry and Physiology Part B Biochemistry and Molecular Biology 11/2014; DOI:10.1016/j.cbpb.2014.08.001 · 1.90 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Whole-genome transcriptome measurements are pivotal for characterizing molecular mechanisms of chemicals and predicting toxic classes, such as genotoxicity and carcinogenicity, from in vitro and in vivo assays. We analyzed the dynamic defense transcriptome responsive to Chlamys farreri upon exposure to benzo[a]pyrene (BaP) using a digital gene expression (DGE) approach. Following exposure, 251 and 177 genes were up-regulated, 142 and 300 genes were down-regulated at 3day post-exposure and 10day post-exposure, respectively. The differentially expressed genes were related to toxicological response, oxidative stress and the metabolism of proteins and fats. Of these genes, most genes up-regulated at the early stage of exposure tended to be constantly down-regulated at the later stage whereas the landscape of the up or down-regulated genes differed significantly at the two time points investigated. Functional enrichment analyses show that RNA-seq yields more insight into the biological mechanisms related to the toxic effects caused by BaP, i.e., two- to fivefold more affected pathways and biological processes. Besides, we observed a change in the expression of ten genes which important differentially-expressed detoxification-related genes, and this was subsequently confirmed via quantitative real-time PCR. Our results provide evidence that RNA-seq is a powerful tool for toxicology, is capable of generating novel and valuable information at the transcriptome level for characterizing deleterious effects caused by BaP.
    Gene 09/2014; 551(2). DOI:10.1016/j.gene.2014.09.003 · 2.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study aims to investigate the effects of chrysene (CHR) on biotransformation and detoxification responses of mature scallop Chlamys farreri during the reproduction period. Scallops were exposed to 0.2, 0.8 and 3.2 μg/L CHR for 21 days; at day 10 scallops were induced to spawn. At days 1, 3, 6, 10, 11, 15 and 21, enzymatic activities of 7-ethoxyresorufin O-deethylase (EROD) and glutathione-s-transferase (GST), related mRNA expression levels of CYP1A1, GST-pi and P-glycoprotein (P-gp) in digestive glands and CHR bioaccumulation in tissues were examined by separately analyzing male and female scallops. During the pre-spawn period, CHR concentrations of the treated groups in tissues except hemolymph increased rapidly. Levels of enzymatic activities and related gene expressions were all induced by the exposure to CHR for females and males. GST activity and GST-pi mRNA expression showed a good time- and dose-dependent relationship only in males, and P-gp mRNA expression exhibited a dose-dependent manner in both sexes. During the post-spawn period, spawning caused significant reductions of bioaccumulation in tissues but gill and hemolymph. Enzymatic activities and related gene expressions were for females significantly depressed at day 21 at 0.8 or 3.2 μg/L CHR. Overall, females accumulated more CHR than males, while males were more sensitive than females to CHR exposure in gene expressions and enzyme activities. P-gp mRNA expression seemed to be a potential biomarker for PAH exposure. These results will offer the information on CHR biotransformation in this species, and ensure the influence of gender and reproductive status on PAH detoxification metabolism. Copyright © 2015 Elsevier Inc. All rights reserved.


1 Download