Detection of serum proteins by native polyacrylamide gel electrophoresis using Blue Sepharose CL-6B-containing stacking gels.

Department of Clinical Biochemistry, Kyorin University School of Health Sciences, Miyashita, Hachioji, Tokyo, Japan.
Analytical Biochemistry (Impact Factor: 2.58). 09/2002; 307(2):337-40. DOI: 10.1016/S0003-2697(02)00052-0
Source: PubMed

ABSTRACT Analysis of serum proteins by native polyacrylamide gel electrophoresis is difficult because albumin is abundant in serum and interferes with the resolution of other proteins, especially alpha-antitrypsin which has mobility that is very similar to that of albumin. We present here a method in which serum proteins are separated by polyacrylamide gel electrophoresis using stacking gels containing Blue Sepharose CL-6B, which has a high affinity for albumin, lipoproteins, kinases, and pyridine-nucleotide-dependent oxidoreductases. During electrophoresis, proteins that bind to Blue Sepharose CL-6B stay in the stacking gel and do not migrate into the separating gel. As a consequence, certain proteins, including alpha(1)-antitrypsin, can be detected as clear bands. This method overcomes the requirement for fractionation of serum samples prior to electrophoresis to remove albumin and allows the simultaneous analysis of many samples.

  • [Show abstract] [Hide abstract]
    ABSTRACT: This paper compares different buffer systems for the electrophoretic separation of the five most abundant serum proteins on native-PAGE gel and cellulose membranes. A modified Tris-tricine system was shown to be superior for the separation of these serum proteins in a 7% m/v native-PAGE gel as compared with the traditionally used Tris-glycine and Tris-tricine methods. This modified Tris-tricine buffer system was also employed for the separation of serum proteins using a cellulose acetate membrane and very effective separation was observed as compared with the traditionally used Tris-barbital and Tris-glycine buffer systems.
    Journal of Separation Science 08/2011; 34(18):2463-7. · 2.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The application of pore-gradient polyacrylamide gel electrophoresis (PG-PAGE) incorporated with carbon nanotube modified by Triton X-100 and carboxylation so as to improve the separation of human serum proteins is reported. The novel PG-PAGE was made by adding water-soluble single-walled carbon nanotubes (CNTs) when preparing the polyacrylamide gel. Significant improvements in separation of complement C3 protein and haptoglobin (Hp) in human serum were achieved. It was estimated that the interactions between the hydrophilic groups on the proteins and the surface of the CNTs result in different adsorption kinetics of complement C3 and Hp subtype on the nanoparticles incorporated in the gel, thus enhancing the separation of the two proteins in serum. This new CNT matrix-assisted PG-PAGE method for enhanced separation of complement C3 and Hp in human serum was successfully applied to distinguish the samples from liverish patients and healthy people.
    Journal of Separation Science 10/2010; 33(21):3393-9. · 2.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: An endemic peripheral vascular disorder due to chronic arsenic poisoning, named Blackfoot disease (BFD), occurs in Taiwan. BFD causes destruction of vascular endothelial cells, and an anti-endothelial cell IgG antibody was found in the sera of BFD patients. We studied the role of this IgG antibody (BFD-IgG) in modulating proliferation and angiogenesis of human umbilical vein endothelial cells (HUVECs) and found that a low concentration of BFD-IgG (200 microg/mL) stimulated endothelial cell growth and increased expressions of vascular cell adhesion molecule-1 (VCAM-1), nerve growth factor (NGF), and vascular endothelial growth factor (VEGF). The apoptosis events appeared not altered by addition of BFD-IgG. An in vitro neoangiogenesis assay demonstrated that BFD-IgG promoted the formation of tube-like structures, which was completely abrogated by anti-VEGF neutralizing antibody and partially by NOS inhibitor, L-NAME. We conclude that BFD-IgG at 200 microg/mL results in cell proliferation and enhanced VEGF-dependent angiogenesis in vitro. Those results suggested that a low concentration of BFD-IgG plays a protective role in the pathogenesis or the progression of BFD.
    Microvascular Research 08/2008; 76(3):194-201. · 2.93 Impact Factor


Available from