Article

Genetics of epilepsy: current status and perspectives.

Department of Neuropsychiatry, Hirosaki University, Hirosaki 036-8562, Japan.
Neuroscience Research (Impact Factor: 2.2). 10/2002; 44(1):11-30. DOI: 10.1016/S0168-0102(02)00065-2
Source: PubMed

ABSTRACT Epilepsy affects more than 0.5% of the world's population and has a large genetic component. The most common human genetic epilepsies display a complex pattern of inheritance and the susceptibility genes are largely unknown. However, major advances have recently been made in our understanding of the genetic basis of monogenic inherited epilepsies. Progress has been particularly evident in familial idiopathic epilepsies and in many inherited symptomatic epilepsies, with the discovery that mutations in ion channel subunits are implicated, and direct molecular diagnosis of some phenotypes of epilepsy is now possible. This article reviews recent progress made in molecular genetics of epilepsy, focusing mostly on idiopathic epilepsy, and some types of myoclonus epilepsies. Mutations in the neuronal nicotinic acetylcholine receptor alpha4 and beta2 subunit genes have been detected in families with autosomal dominant nocturnal frontal lobe epilepsy, and those of two K(+) channel genes were identified to be responsible for underlying genetic abnormalities of benign familial neonatal convulsions. The voltage-gated Na(+) -channel (alpha1,2 and beta1 subunit), and GABA receptor (gamma2 subunit) may be involved in the pathogenesis of generalized epilepsy with febrile seizure plus and severe myoclonic epilepsy in infancy. Mutations of Ca(2+)-channel can cause some forms of juvenile myoclonic epilepsy and idiopathic generalized epilepsy. Based upon these findings, pathogenesis of epilepsy as a channelopathy and perspectives of molecular study of epilepsy are discussed.

0 Bookmarks
 · 
97 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Signal transmission through synapses connecting two neurons is mediated by release of neurotransmitter from the presynaptic axon terminals and activation of its receptor at the postsynaptic neurons. γ-Aminobutyric acid (GABA), non-protein amino acid formed by decarboxylation of glutamic acid, is a principal neurotransmitter at inhibitory synapses of vertebrate and invertebrate nervous system. On one hand glutamic acid serves as a principal excitatory neurotransmitter. This article reviews GABA researches on; (1) synaptic inhibition by membrane hyperpolarization, (2) exclusive localization in inhibitory neurons, (3) release from inhibitory neurons, (4) excitatory action at developmental stage, (5) phenotype of GABA-deficient mouse produced by gene-targeting, (6) developmental adjustment of neural network and (7) neurological/psychiatric disorder. In the end, GABA functions in simple nervous system and plants, and non-amino acid neurotransmitters were supplemented.(Communicated by Masanori OTSUKA, M.J.A.).
    Proceedings of the Japan Academy Ser B Physical and Biological Sciences 01/2013; 89(4):139-56. · 2.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Epilepsy modeling is essential for understanding the basic mechanisms of the epileptic process. The Genetic Audiogenic Seizure Hamster (GASH:Sal) exhibits generalized tonic-clonic seizures of genetic origin in response to sound stimulation and is currently being validated as a reliable model of epilepsy. Here, we performed a pharmacological and neuroethological study using well-known and widely used antiepileptic drugs (AEDs), including phenobarbital (PB), valproic acid (VPA), and levetiracetam (LEV). The intraperitoneal administration of PB (5-20mg/kg) and VPA (100-300mg/kg) produced a dose-dependent decrease in GASH:Sal audiogenic seizure severity scores. The administration of LEV (30-100mg/kg) did not produce a clear effect. Phenobarbital showed a short plasmatic life and had a high antiepileptic effect starting at 10mg/kg that was accompanied by ataxia. Valproic acid acted only at high concentrations and was the AED with the most ataxic effects. Levetiracetam at all doses also produced sedation and ataxia side effects. We conclude that the GASH:Sal is a reliable genetic model of epilepsy suitable to evaluate AEDs.
    Epilepsy & Behavior 07/2013; 28(3):413-425. · 1.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Knock-in mouse models have contributed tremendously to our understanding of human disorders. However, generation of knock-in animals requires a significant investment of time and effort. We addressed this problem by developing a novel knock-in system that circumvents several traditional challenges by establishing stem cells with acceptor elements enveloping a particular genomic target. Once established, these acceptor embryonic stem (ES) cells are efficient at directionally incorporating mutated target DNA using modified Cre/lox technology. This is advantageous, because knock-ins are not restricted to one a priori selected variation. Rather, it is possible to generate several mutant animal lines harboring desired alterations in the targeted area. Acceptor ES cell generation is the rate-limiting step, lasting approximately 2 months. Subsequent manipulations toward animal production require an additional 8 weeks, but this delimits the full period from conception of the genetic alteration to its animal incorporation. We call this system a "kick-in" to emphasize its unique characteristics of speed and convenience. To demonstrate the functionality of the kick-in methodology, we generated two mouse lines with separate mutant versions of the voltage-dependent potassium channel Kv7.2 (Kcnq2): p.Tyr284Cys (Y284C) and p.Ala306Thr (A306T); both variations have been associated with benign familial neonatal epilepsy. Adult mice homozygous for Y284C, heretofore unexamined in animals, presented with spontaneous seizures, whereas A306T homozygotes died early. Heterozygous mice of both lines showed increased sensitivity to pentylenetetrazole, possibly due to a reduction in M-current in CA1 hippocampal pyramidal neurons. Our observations for the A306T animals match those obtained with traditional knock-in technology, demonstrating that the kick-in system can readily generate mice bearing various mutations, making it a suitable feeder technology toward streamlined phenotyping.
    PLoS ONE 01/2014; 9(2):e88549. · 3.73 Impact Factor

Full-text (2 Sources)

View
141 Downloads
Available from
May 26, 2014