Article

Involvement of desat1 gene in the control of Drosophila melanogaster pheromone biosynthesis.

Université Paris-Sud, UMR8620, NAMC, Orsay, France.
Genetica (Impact Factor: 1.68). 05/2002; 114(3):269-74. DOI: 10.1023/A:1016223000650
Source: PubMed

ABSTRACT Cuticular pheromones in Drosophila melanogaster are unsaturated hydrocarbons with at least one double bond in position 7: 7-tricosene and 7-pentacosene in males and 7,11 -heptacosadiene and 7,11 -nonacosadiene in females. We have previously shown that a desaturase gene, desat1, located in chromosome region 87 C could be involved in this process: the Desat1 enzyme preferentially leads to the synthesis of palmitoleic acid, a precursor of omega7 fatty acids and 7-unsaturated hydrocarbons. Therefore, we have searched for P-elements in the 87 region and mapped them. One was found inserted into the first intron of the desat1 gene. Flies heterozygous for this insertion showed a large decrease in the level of 7-unsaturated hydrocarbons, comparable to that observed in flies heterozygous for a deficiency overlapping desat1. Less than 1 % of flies homozygous for this insertion were viable. They were characterized by dramatic pheromone decreases. After excision of the transposon, the pheromone phenotype was reversed in 69% of the lines and the other excision lines had more or less decreased amounts of 7-unsaturated hydrocarbons. All these results implicate desat1 in the synthesis of Drosophila pheromones.

0 Bookmarks
 · 
58 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many species of Drosophila form conspecific pupa aggregations across the breeding sites. These aggregations could result from species-specific larval odor recognition. To test this hypothesis we used larval odors of D. melanogaster and D. pavani, two species that coexist in the nature. When stimulated by those odors, wild type and vestigial (vg) third-instar larvae of D. melanogaster pupated on conspecific larval odors, but individuals deficient in the expression of the odor co-receptor Orco randomly pupated across the substrate, indicating that in this species, olfaction plays a role in pupation site selection. Larvae are unable to learn but can smell, the Syn97CS and rut strains of D. melanogaster, did not respond to conspecific odors or D. pavani larval cues, and they randomly pupated across the substrate, suggesting that larval odor-based learning could influence the pupation site selection. Thus, Orco, Syn97CS and rut loci participated in the pupation site selection. When stimulated by conspecific and D. melanogaster larval cues, D. pavani larvae also pupated on conspecific odors. The larvae of D. gaucha, a sibling species of D. pavani, did not respond to D. melanogaster larval cues, pupating randomly across the substrate. In nature, D. gaucha is isolated from D. melanogaster. Interspecific hybrids, which result from crossing pavani female with gaucha males clumped their pupae similarly to D. pavani, but the behavior of gaucha female x pavani male hybrids was similar to D. gaucha parent. The two sibling species show substantial evolutionary divergence in organization and functioning of larval nervous system. D. melanogaster and D. pavani larvae extracted information about odor identities and the spatial location of congener and alien larvae to select pupation sites. We hypothesize that larval recognition contributes to the cohabitation of species with similar ecologies, thus aiding the organization and persistence of Drosophila species guilds in the wild.
    PLoS ONE 01/2014; 9(7):e102159. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Even though premating isolation is hypothesized to be a major driving force in speciation, its genetic basis is poorly known. In the noctuid moth Heliothis subflexa, one group of sex pheromone components, the acetates, emitted by the female, plays a crucial isolating role in preventing interspecific matings to males of the closely related Heliothis virescens, in which females do not produce acetates and males are repelled by them. We previously found intraspecific variation in acetates in H. subflexa: females in eastern North America contain significantly more acetates than females in Western Mexico. Here we describe the persistence of this intraspecific variation in laboratory-reared strains and the identification of one major quantitative trait locus (QTL), explaining 40% of the variance in acetate amounts. We homologized this intraspecific QTL to our previously identified interspecific QTL using restriction-associated DNA (RAD) tags. We found that a major intraspecific QTL overlaps with one of the two major interspecific QTL. To identify candidate genes underlying the acetate variation, we investigated a number of gene families with known or suspected acetyl- or acyltransferase activity. The most likely candidate genes did not map to our QTL, so that we currently hypothesize that a transcription factor underlies this QTL. Finding a single, large QTL that impacts variation in pheromone blends between and within species is, to our knowledge, the first such example for traits that have been demonstrated to affect premating isolation.
    Molecular Ecology 01/2013; · 6.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lipocalins are a family of proteins characterized by a conserved eight-stranded β-barrel structure with a ligand binding pocket. They perform a wide range of biological functions and this functional multiplicity must relate to the lipid partner involved. Apolipoprotein D (ApoD) and its insect homologues, Lazarillo (Laz) and Neural Lazarillo (NLaz), share common ancestral functions like longevity, stress resistance and lipid metabolism regulation, coexisting with very specialized functions, like courtship behavior. Using tryptophan fluorescence titration we screened binding of fifteen potential lipid partners for NLaz, ApoD and Laz and uncovered several novel ligands with apparent dissociation constants in the low micromolar range. Retinoic acid (RA), retinol, fatty acids and sphingomyelin are shared ligands. Sterols however showed a species specific binding pattern: Cholesterol did not show strong binding to human ApoD, while NLaz and Laz did bind ergosterol. Among the Lipocalin-specific ligands, we found that ApoD selectively binds the endocannabinoid anandamide but not 2-acylglycerol, and that NLaz binds the pheromone 7-tricosene but not 7,11-heptacosadiene or 11-cis-vaccenyl acetate. To test the functional relevance of Lipocalin ligand-binding at the cellular level, we analyzed the effect of ApoD, Laz and NLaz preloaded with RA on neuronal differentiation. Our results show that ApoD is necessary and sufficient to allow for RA differentiating activity. Both human ApoD and Drosophila NLaz successfully deliver RA to immature neurons, driving neurite outgrowth. We conclude that ApoD, NLaz and Laz bind selectively to a different but overlapping set of lipid ligands. This multispecificity can explain their varied physiological functions. This article is protected by copyright. All rights reserved.
    FEBS Journal 06/2013; · 4.25 Impact Factor