Article

MYO18B, a candidate tumor suppressor gene at chromosome 22q12.1, deleted, mutated, and methylated in human lung cancer.

National Cancer Center Research Institute, Tokyo 104-0045, Japan.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 10/2002; 99(19):12269-74. DOI: 10.1073/pnas.192445899
Source: PubMed

ABSTRACT Loss of heterozygosity on chromosome 22q has been detected in approximately 60% of advanced nonsmall cell lung carcinoma (NSCLC) as well as small cell lung carcinoma (SCLC), suggesting the presence of a tumor suppressor gene on 22q that is involved in lung cancer progression. Here, we isolated a myosin family gene, MYO18B, located at chromosome 22q12.1 and found that it is frequently deleted, mutated, and hypermethylated in lung cancers. Somatic MYO18B mutations were detected in 19% (14/75) of lung cancer cell lines and 13% (6/46) of primary lung cancers of both SCLC and NSCLC types. MYO18B expression was reduced in 88% (30/34) of NSCLC and 47% (8/17) of SCLC cell lines. Its expression was restored by treatment with 5-aza-2'-deoxycytidine in 11 of 14 cell lines with reduced MYO18B expression, and the promoter CpG island of the MYO18B gene was methylated in 17% (8/47) of lung cancer cell lines and 35% (14/40) of primary lung cancers. Furthermore, restoration of MYO18B expression in lung carcinoma cells suppressed anchorage-independent growth. These results indicate that the MYO18B gene is a strong candidate for a novel tumor suppressor gene whose inactivation is involved in lung cancer progression.

0 Bookmarks
 · 
181 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Small cell lung cancer (SCLC), a special type of lung cancer, is reputed to carry a poor prognosis. The morbidity of SCLC is increasing in China and other countries. A variety of DNA alterations associated with non-small cell lung cancer (NSCLC) have been described. However, genetic and epigenetic changes of SCLC are not well established. Few studies have demonstrated that epigenetic silencing of key tumor suppressor genes (TSGs) is pivotal to initiation and development of SCLC. Recently, promoter methylation of many TSGs have been identified in SCLC. These novel TSGs are potential tumor biomarkers for early diagnosis and prognostic prediction. Moreover, epigenetic promoter methylation of TSGs could be a target of intervention with a wide prospect of clinical application. This review summarizes recent studies on promoter methylation of TSGs in SCLC and aims to provide better understanding of the promoter methylation in tumorigenesis and progression of SCLC.
    Journal of thoracic disease. 08/2013; 5(4):532-7.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The actin cytoskeleton, which regulates cell polarity, adhesion, and migration, can influence cancer progression, including initial acquisition of malignant properties by normal cells, invasion of adjacent tissues, and metastasis to distant sites. Actin-dependent molecular motors, myosins, play key roles in regulating tumor progression and metastasis. In this review, we examine how non-muscle myosins regulate neoplastic transformation and cancer cell migration and invasion. Members of the myosin superfamily can act as either enhancers or suppressors of tumor progression. This review summarizes the current state of knowledge on how mutations or epigenetic changes in myosin genes and changes in myosin expression may affect tumor progression and patient outcomes and discusses the proposed mechanisms linking myosin inactivation or upregulation to malignant phenotype, cancer cell migration, and metastasis. © 2014 Wiley Periodicals, Inc.
    Cytoskeleton 08/2014; · 2.87 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: 'Epigenetics' is defined as the inheritable changes in gene expression with no alterations in DNA sequences. Epigenetics is a rapidly expanding field, and the study of epigenetic regulation in cancer is emerging. Disruption of the epigenome is a fundamental mechanism in cancer, and several epigenetic drugs have been proven to prolong survival and to be less toxic than conventional chemotherapy. Promising results from combination clinical trials with DNA methylation inhibitors and histone deacetylase inhibitors have recently been reported, and data are emerging that describe molecular determinants of clinical responses. Despite significant advances, challenges remain, including a lack of predictive markers, unclear mechanisms of response and resistance, and rare responses in solid tumors. Preclinical studies are ongoing with novel classes of agents that target various components of the epigenetic machinery. In the present review, examples of studies that demonstrate the role of epigenetic regulation in human cancers with the focus on histone modifications and DNA methylation, and the recent clinical and translational data in the epigenetics field that have potential in cancer therapy are discussed.
    Oncology Reports 12/2013; · 2.19 Impact Factor

Full-text (2 Sources)

Download
0 Downloads
Available from
Jan 1, 2015