Memory CD4(+) T cells are the earliest detectable human immunodeficiency virus type 1 (HIV-1)-infected cells in the female genital mucosal tissue during HIV-1 transmission in an organ culture system.

Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.
Journal of Virology (Impact Factor: 4.65). 11/2002; 76(19):9868-76. DOI: 10.1128/JVI.76.19.9868-9876.2002
Source: PubMed

ABSTRACT The virologic and cellular factors that are involved in transmission of human immunodeficiency virus type 1 (HIV-1) across the female genital tissue are poorly understood. We have recently developed a human cervical tissue-derived organ culture model to study heterosexual transmission of HIV-1 that mimics the in vivo situation. Using this model we investigated the role of phenotypic characteristics of HIV-1 and identified the cell types that are first infected during transmission. Our data indicate that the cell-free R5 HIV-1 was more efficiently transmitted than cell-free X4 HIV-1. Cell-free and cell-associated HIV-1 had comparable transmission efficiency regardless of whether the virus was of R5 or X4 type. We have demonstrated that memory CD4(+) T cells and not Langerhans cells were the first HIV-1 RNA-positive cells detected at the epithelial-submucosal junction 6 h after virus exposure. Multicolor laser confocal microscopy demonstrated a globular distribution of HIV-1 gag-pol mRNA in the cytoplasm, and the distribution of CD4 and the CD45RO isoform was irregular on the cellular membrane. At 96 h postinoculation, in addition to memory CD4(+) T cells, HIV-1 RNA-positive Langerhans cells and macrophages were also detected. The identification of CD4(+) T cells in the tissue at 6 h was confirmed by flow cytometric simultaneous immunophenotyping and ultrasensitive fluorescence in situ hybridization assay on immune cells isolated from disaggregated tissue. Furthermore, PMPA [9-[2-(phosphonomethoxy)propyl] adenine], an antiretroviral compound, and UC781, a microbicide, inhibited HIV-1 transmission across the mucosa, indicating the utility of the organ culture to screen topical microbicides for their ability to block sexual transmission of HIV-1.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract can be found at the end of the PhD thesis
    01/2013, Degree: PhD, Supervisor: Hans Nauwynck
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sexually transmitted infections like HIV, HPV, and HSV-2, as well as unplanned pregnancy, take a huge toll on women worldwide. Woman-initiated multipurpose prevention technologies that contain antiviral/antibacterial drugs (microbicides) and a contraceptive to simultaneously target sexually transmitted infections and unplanned pregnancy are being developed to reduce these burdens. This review will consider products that are applied topically to the vagina. Rectally administered topical microbicides in development for receptive anal intercourse are outside the scope of this review. Microbicide and microbicide/contraceptive candidates must be rigorously evaluated in preclinical models of safety and efficacy to ensure that only candidates with favorable risk benefit ratios are advanced into human clinical trials. This review describes the comprehensive set of in vitro, ex vivo, and in vivo models used to evaluate the preclinical safety and antiviral efficacy of microbicide and microbicide/contraceptive candidates.
    Advanced Drug Delivery Reviews 12/2014; 26. DOI:10.1016/j.addr.2014.12.005 · 12.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Exosomes are membranous extracellular nanovesicles secreted by diverse cell types. Exosomes from healthy human semen have been shown to inhibit HIV-1 replication and to impair progeny virus infectivity. In this study, we examined the ability of healthy human semen exosomes to restrict HIV-1 and LP-BM5 murine AIDS virus transmission in three different model systems. We show that vaginal cells internalize exosomes with concomitant transfer of functional mRNA. Semen exosomes blocked the spread of HIV-1 from vaginal epithelial cells to target cells in our cell-to-cell infection model and suppressed transmission of HIV-1 across the vaginal epithelial barrier in our trans-well model. Our in vivo model shows that human semen exosomes restrict intravaginal transmission and propagation of murine AIDS virus. Our study highlights an antiretroviral role for semen exosomes that may be harnessed for the development of novel therapeutic strategies to combat HIV-1 transmission. Copyright © 2015 Elsevier Inc. All rights reserved.
    Virology 08/2015; 482. DOI:10.1016/j.virol.2015.03.040 · 3.28 Impact Factor


1 Download
Available from