Thioredoxin reductase regulates AP-1 activity as well as thioredoxin nuclear localization via active cysteines in response to ionizing radiation.

Radiation Oncology Branch, Radiation Oncology Sciences Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
Oncogene (Impact Factor: 8.56). 10/2002; 21(41):6317-27. DOI: 10.1038/sj.onc.1205749
Source: PubMed

ABSTRACT A recently identified class of signaling factors uses critical cysteine motif(s) that act as redox-sensitive 'sulfhydryl switches' to reversibly modulate specific signal transduction cascades regulating downstream proteins with similar redox-sensitive sites. For example, signaling factors such as redox factor-1 (Ref-1) and transcription factors such as the AP-1 complex both contain redox-sensitive cysteine motifs that regulate activity in response to oxidative stress. The mammalian thioredoxin reductase-1 (TR) is an oxidoreductase selenocysteine-containing flavoprotein that also appears to regulate multiple downstream intracellular redox-sensitive proteins. Since ionizing radiation (IR) induces oxidative stress as well as increases AP-1 DNA-binding activity via the activation of Ref-1, the potential roles of TR and thioredoxin (TRX) in the regulation of AP-1 activity in response to IR were investigated. Permanently transfected cell lines that overexpress wild type TR demonstrated constitutive increases in AP-1 DNA-binding activity as well as AP-1-dependent reporter gene expression, relative to vector control cells. In contrast, permanently transfected cell lines expressing a TR gene with the active site cysteine motif deleted were unable to induce AP-1 activity or reporter gene expression in response to IR. Transient genetic overexpression of either the TR wild type or dominant-negative genes demonstrated similar results using a transient assay system. One mechanism through which TR regulates AP-1 activity appears to involve TRX sub-cellular localization, with no change in the total TRX content of the cell. These results identify a novel function of the TR enzyme as a signaling factor in the regulation of AP-1 activity via a cysteine motif located in the protein.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Reactive electrophiles produced during oxidative stress, such as 4-hydroxynonenal (HNE), are increasingly recognized as contributing factors in a variety of degenerative and inflammatory diseases. Here we used the RNA-seq technology to characterize transcriptome responses in RKO cells induced by HNE at subcytotoxic and cytotoxic doses. RNA-seq analysis rediscovered most of the differentially expressed genes reported by microarray studies and also identified novel gene responses. Interestingly, differential expression detection at the coding DNA sequence (CDS) level helped to further improve the consistency between the two technologies, suggesting the utility and importance of the CDS level analysis. RNA-seq data analysis combining gene and CDS levels yielded an informative and comprehensive picture of gradually evolving response networks with increasing HNE doses, from cell protection against oxidative injury at low dose, initiation of cell apoptosis and DNA damage at intermediate dose to significant deregulation of cellular functions at high dose. These evolving dose-dependent pathway changes, which cannot be observed by the gene level analysis alone, clearly reveal the HNE cytotoxic effect and are supported by IC50 experiments. Additionally, differential expression at the CDS level provides new insights into isoform regulation mechanisms. Taken together, our data demonstrate the power of RNA-seq to identify subtle transcriptome changes and to characterize effects induced by HNE through the generation of high-resolution data coupled with differential analysis at both gene and CDS levels.
    Molecular BioSystems 09/2013; · 3.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The TP53 induced glycolysis and apoptosis regulator (TIGAR) knockdown is proved to radiosensitize glioma cells, while the mechanisms are not fully understood. Thioredoxin-1 (TRX1) is a redox-sensitive oxidoreductase which plays critical roles in DNA damage signal transduction via nuclear translocation in irradiated cells. Since TRX1-dependent DNA damage signaling pathway relies on NADPH to maintain reduced state of TRX1 and TIGAR functions to increase NADPH generation under oxidative stress, in present study, the roles of TRX1 in TIGAR abrogation-induced radiosensitization were investigated. It was demonstrated that IR-induced nuclear translocation of TRX1 was significantly inhibited by TIGAR interfering while reversed by wildtype (WT)-TRX1 overexpression. In addition, WT-TRX1 overexpression could accelerate the process of DNA damage repair postponed by TIGAR knockdown in irradiated glioma cells. The reduction process of IR-oxidized TRX1 was also delayed by TIGAR knockdown but restored by WT-TRX1 overexpression. Therefore, we conclude that TIGAR knockdown-induced radiosensitization of glioma cells may be dependent on the inhibition of TRX1 nuclear translocation.
    Free Radical Biology and Medicine 04/2014; · 5.27 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nickel (II) is a ubiquitous environmental contaminant and it is known to be a highly toxic metal. The level of nickel in the environment has been raised with advances in industrialization and the role of nickel in human diseases is of increasing concern. Thioredoxin reductase 1 (Trr 1) is one of major redox factors having a potential role in cellular defense system against exposure to environmental toxicants. In this study, we investigated the protective roles of the Trr 1 against nickel-induced DNA damage. We found significantly higher amounts of DNA strand break in Trr 1 silencing cells compared to Trr 1 wild-type cells under nickel exposure, using γ-H2AX immunofluorescence staining. We also identified the potential molecular biomarkers that participated in gene-environment interaction between Trr 1 deficiency and nickel exposure via microarray analysis. In particular, seven upregulated genes (AHNAK, FZR1, LGALS7, PLD1, PPM1F, RHOB and SFRP1) and three down-regulated genes (IFITM1, MAPK8 and RCN1), whose functions are principally in toxicity-prone as well as cytoprotection processes, including cell proliferation, cell survival, apoptosis, inflammation and DNA repair. Our findings demonstrate gene-environment interaction between Trr 1 deficiency and nickel-induced toxicity, as evidence that insufficient of redox factor Trr 1 accelerated DNA lesions caused by nickel exposure. These results suggest that the candidate genes might be further useful in the establishment of Trr 1-mediated strategies by which modulate cellular defense against environmental toxicants, nickel.
    BioChip journal 6(2). · 0.82 Impact Factor

Full-text (2 Sources)

Available from
May 23, 2014