Thioredoxin reductase regulates AP-1 activity as well as thioredoxin nuclear localization via active cysteines in response to ionizing radiation

University of Maryland, Baltimore, Baltimore, Maryland, United States
Oncogene (Impact Factor: 8.56). 10/2002; 21(41):6317-27. DOI: 10.1038/sj.onc.1205749
Source: PubMed

ABSTRACT A recently identified class of signaling factors uses critical cysteine motif(s) that act as redox-sensitive 'sulfhydryl switches' to reversibly modulate specific signal transduction cascades regulating downstream proteins with similar redox-sensitive sites. For example, signaling factors such as redox factor-1 (Ref-1) and transcription factors such as the AP-1 complex both contain redox-sensitive cysteine motifs that regulate activity in response to oxidative stress. The mammalian thioredoxin reductase-1 (TR) is an oxidoreductase selenocysteine-containing flavoprotein that also appears to regulate multiple downstream intracellular redox-sensitive proteins. Since ionizing radiation (IR) induces oxidative stress as well as increases AP-1 DNA-binding activity via the activation of Ref-1, the potential roles of TR and thioredoxin (TRX) in the regulation of AP-1 activity in response to IR were investigated. Permanently transfected cell lines that overexpress wild type TR demonstrated constitutive increases in AP-1 DNA-binding activity as well as AP-1-dependent reporter gene expression, relative to vector control cells. In contrast, permanently transfected cell lines expressing a TR gene with the active site cysteine motif deleted were unable to induce AP-1 activity or reporter gene expression in response to IR. Transient genetic overexpression of either the TR wild type or dominant-negative genes demonstrated similar results using a transient assay system. One mechanism through which TR regulates AP-1 activity appears to involve TRX sub-cellular localization, with no change in the total TRX content of the cell. These results identify a novel function of the TR enzyme as a signaling factor in the regulation of AP-1 activity via a cysteine motif located in the protein.

Download full-text


Available from: Junji Yodoi, May 02, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Deregulated redox systems provide cancer cells protection from increased oxidative stress, such as that induced by ionizing radiation. Expression of the thioredoxin system proteins (thioredoxin, thioredoxin reductase and thioredoxin interacting protein) and downstream peroxiredoxins (I-VI), was examined in tumor specimens from early stage breast cancer patients, subsequently treated by breast conserving surgery and locoregional radiotherapy, to determine if redox protein expression is associated with clinical outcome. Nuclear and cytoplasmic expression was assessed using conventional immunohistochemistry on a tissue microarray of 224 tumors. High expression of cytoplasmic peroxiredoxin-I correlated with a greater risk of local recurrence (p=0.009). When nuclear and cytoplasmic expression patterns were combined, patients with low nuclear but high cytoplasmic expression of peroxiredoxin-I increased significance (p=0.005). Both were independent factors (p=0.006 and 0.003) from multivariate analysis. Associations were obtained between tumor grade and nuclear thioredoxin interacting protein (p=0.01) and with cytoplasmic expression of peroxiredoxin-V (p=0.007) but not with peroxiredoxin-I suggesting that the latter may exert influence via regulation of oxidative stress rather than via altering the tumor phenotype. Results highlight the potential of using redox protein expression, namely peroxiredoxin-I, to predict clinical outcome and support further studies to validate its usefulness as an independent prognostic, and potentially predictive, marker.
    Radiotherapy and Oncology 06/2011; 100(2):308-13. DOI:10.1016/j.radonc.2011.05.029 · 4.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Selenium (Se) is an essential trace element of fundamental importance to health due to its antioxidant, anti-inflammatory and chemopreventive properties attributed to its presence within at least 25 selenoproteins (Sel). Sel include but not limited to glutathione peroxidases (GPx1-GPx6), thioredoxin reductases (TrxR1-TrxR3), iodothyronine deiodinases (ID1-ID3), selenophosphate synthetase 2 (SPS2), 15-kDa Sel (Sel15), SelH, SelI, SelK, SelM, SelN, SelO, SelP, SelR, SelS, SelT, SelV, SelW, as well as the 15-kDa Sel (Fep15), SelJ and SelU found in fish. In this review, we describe some of the recent progress in our understanding of the mechanisms of Sel synthesis. The impact of maternal Se intake on offspring is also discussed. The key regulatory point of Sel synthesis is Se itself, which acts predominantly at post-transcriptional levels, although recent findings indicate transcriptional and redox regulation. Maternal nutrition affects the performance and health of the progeny. Both maternal and offspring Se supplementations are essential for the antioxidant protection of the offspring. Prenatal Se supplementation provides an effective antioxidant system that is already in place at the time of birth while, postnatal Se supplementation becomes the main determinant of progeny Se status after the first few days of progeny life.
    Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology 09/2008; 151(4):361-72. DOI:10.1016/j.cbpb.2008.08.009 · 1.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Thioredoxin reductases (Txnrds) are a group of selenoenzymes participating in cellular redox regulation. Three Txnrd isoforms are known, each of which exhibits distinct cellular localisation and tissue-specific expression pattern. Txnrd1 is found in the cytoplasm, expression of Txnrd2 is restricted to mitochondria and Txnrd3 shows testis-specific expression. Recently, it was shown that Txnrd2 strongly affects the development of blood cells, since mouse embryos deficient for Txnrd2 are severely anaemic, show increased apoptosis in foetal liver and possess haematopoietic liver stem cells of reduced capacity to proliferate in vitro. However, because Txnrd2-deficient mice die at embryonic day 13.5, it was not known how this enzyme affects blood cell function in the adult animal. In the present study we show that conditional Txnrd2 knockouts generated using CD4- and CD19Cre transgenic mice lack Txnrd2 expression in CD4-- and CD19-positive T- and B-lymphocytes, respectively. However, the development and differentiation of both cell types in thymus and bone marrow was not significantly impaired. In addition, B-cell proliferation and activation in response to CD40 and IL-4 was unaltered in Txnrd2-deficient B-cells.
    Biological Chemistry 11/2007; 388(10):1083-90. DOI:10.1515/BC.2007.131 · 2.69 Impact Factor