Buske-Kirschbaum A, Geiben A, Höllig H, Morschhäuser E, Hellhammer DHAltered responsiveness of the hypothalamus-pituitary-adrenal (HPA) axis and the sympathetic adrenomedullary system (SAMS) to stress in patients with atopic dermatitis. J Clin Endocr Metab 87:4245-4251

Center for Psychobiological and Psychosomatic Research, University of Trier, 54286 Trier, Germany.
Journal of Clinical Endocrinology &amp Metabolism (Impact Factor: 6.21). 10/2002; 87(9):4245-51. DOI: 10.1210/jc.2001-010872
Source: PubMed


A growing number of animal data strongly suggest that a hyporeactive hypothalamus-pituitary adrenal (HPA) axis may be pathologically significant by increasing the susceptibility to chronic inflammation. Following this line of evidence, the specific goal of the present study was to investigate the HPA axis in patients with atopic dermatitis (AD), a chronic allergic inflammatory disease. In addition, the sympathetic adrenomedullary (SAM) system as a second potent immunoregulatory and anti-inflammatory stress-response system has been examined. AD patients (n = 36) and nonatopic control subjects (n = 37) were exposed to a standardized laboratory stressor consisting of a free speech and mental arithmetic task in front of an audience. Cortisol, ACTH, and catecholamine concentrations were assessed before and after the stressor. To investigate feedback sensitivity of the HPA axis, a low dose (0.5 mg) dexamethasone suppression test was also performed. AD patients showed significantly attenuated cortisol and ACTH responses to the stressor, whereas catecholamine levels were significantly elevated in atopic patients. No difference between the experimental groups was found in basal cortisol and ACTH concentrations, whereas basal catecholamine levels were significantly elevated. Analysis of cortisol levels after dexamethasone treatment suggested an intact feedback sensitivity in AD sufferers at the pituitary level. The present findings suggest that patients with AD demonstrate a blunted HPA axis responsiveness with a concurrent overreactivity of the SAM system to psychosocial stress. Considering the important immunoregulatory role of the HPA axis and the SAM system, especially under stressful conditions, an aberrant responsiveness of these neuroendocrine systems may increase the susceptibility to (allergic) inflammation and may be one psychobiological mechanism of stress-related aggravation of the disease.

Download full-text


Available from: Dirk Hellhammer,
  • Source
    • "Therefore, it seems plausible that once a stimulus has been evaluated as threatening, having a low cortisol response can constitute a maladaptive response because it can reduce our chances of success. In support of this, a reduced HPA-axis response to stress has been observed in several stress-related pathologies such as atopic dermatitis, asthma (Buske-Kirschbaum et al., 2002, 2003) and, interestingly, also in depression, which in turn is accompanied by declarative and working memory deficits and a decrease in hippocampal and prefrontal cortex volumes (Burke et al., 2005; Savitz and Drevets, 2009). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Age-related memory decline has been associated with a faulty regulation of the hypothalamus-pituitary-adrenal axis (HPA-axis). The aim of this study was to investigate whether the magnitude of the stress-induced cortisol increase is related to memory performance when memory is measured in non-stressful conditions. To do so, declarative and working memory performance were measured in 31 men and 35 women between 55 and 77 years of age. On a different day, the magnitude of their cortisol response to acute psychosocial stress was measured. The relationship between the cortisol response and memory performance was U shaped: a low cortisol response to stress was related to poorer declarative and working memory performance, whereas those who did not increase their cortisol levels and those who had the largest cortisol increase had better declarative and working memory capabilities. Sex did not moderate these relationships. These results suggest that a low cortisol response to stress could reflect a defective HPA-axis response to stressors that is accompanied by poorer memory performance. Conversely, a high cortisol response seems to reflect a correct functioning of the HPA-axis and may protect against memory deficits in the later stages of human life.
    Frontiers in Aging Neuroscience 07/2014; 6:157. DOI:10.3389/fnagi.2014.00157 · 4.00 Impact Factor
  • Source
    • "And then regarding the anti-inflammatory role of R. roesa, we determined whether R. rosea decreased the proinflammatory cytokine expression in mice. This idea is showing that disruption or attenuation of peripheral organ function is linked to an increased risk for chronic inflammatory disease [40–43]. In the present study, oral administration of R. rosea extract significantly decreases iNOS and proinflammatory cytokines responses in not only kidney but also prefrontal cortex of brain. "
    [Show abstract] [Hide abstract]
    ABSTRACT: To determine the biological activity of Rhodiola rosea, the protein expression of iNOS and proinflammatory cytokines was measured after the activation of murine microglial BV2 cells by LPS under the exposure of constituents of Rhodiola rosea: crude extract, rosin, rosarin, and salidroside (each 1-50 μ g/mL). The LPS-induced expression of iNOS and cytokines in BV2 cells was suppressed by the constituents of Rhodiola rosea in a concentration-dependent manner. Also the expression of the proinflammatory factors iNOS, IL-1 β , and TNF- α in the kidney and prefrontal cortex of brain in mice was suppressed by the oral administration of Rhodiola rosea crude extract (500 mg/kg). To determine the neuroprotective effect of constituents of Rhodiola rosea, neuronal cells were activated by L-glutamate, and neurotoxicity was analyzed. The L-glutamate-induced neurotoxicity was suppressed by the treatment with rosin but not by rosarin. The level of phosphorylated MAPK, pJNK, and pp38 was increased by L-glutamate treatment but decreased by the treatment with rosin and salidroside. These results indicate that Rhodiola rosea may have therapeutic potential for the treatment of inflammation and neurodegenerative disease.
    Evidence-based Complementary and Alternative Medicine 04/2013; 2013:514049. DOI:10.1155/2013/514049 · 1.88 Impact Factor
  • Source
    • "Recently, the anti-inflammatory effect of endogenous glucocorticoids released by the activated hypothalamic-pituitary-adrenal axis (HPAA) attracts scientists' attention. A low HPAA activity in allergic patients has been reported in a large number of clinical trials [6] [7]. Initially, the main interest of researchers was concentrated on the HPAA of asthmatics that were on long-term treatment with inhaled corticosteroid (ICS); subsequently, a growing number of studies recognized that asthmatic patients not treated with ICS were also likely to have an attenuated activity and/or responsiveness of their HPAA [8] [9]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: THE STUDY WAS THE FIRST TIME TO ESTABLISH AND COMPARE TWO RAT MODELS OF TWO COMMON SYNDROMES: Kidney Yang Deficiency syndrome (KYDS) in traditional Chinese medicine (TCM) and abnormal savda syndrome (ASS) in traditional Uighur medicine (TUM). Then, we also established and evaluated rat models of combining disease and syndrome models of asthma with KYDS or ASS. Results showed that usage of the high dose of corticosterone (CORT) injection or external factors could successfully establish the KYDS or ASS rat models, and the two models had similar changes in biological characterization, abnormal behaviors, dysfunction of hypothalamic-pituitary-target organ axes (HPTOA), and sympathetic/parasympathetic (S/P) nerve system but varied in different degrees. The rat models of combining disease and syndrome of asthma with KYDS or ASS had either pathological characteristics of asthma such as airway hyperresponsiveness (AHR), airway inflammation, airway remodeling, which were more serious than allergy exposure alone, or the syndrome performance of Kidney Yang Deficiency in TCM and abnormal savda in TUM. These findings provide a biological rationale for further investigation of combining disease and syndrome model of asthma as an effective animal model for exploring asthma based on the theory of traditional medicine.
    Evidence-based Complementary and Alternative Medicine 04/2013; 2013(1):658364. DOI:10.1155/2013/658364 · 1.88 Impact Factor
Show more