Article

Altered responsiveness of the hypothalamus-pituitary-adrenal axis and the sympathetic adrenomedullary system to stress in patients with atopic dermatitis.

Center for Psychobiological and Psychosomatic Research, University of Trier, 54286 Trier, Germany.
Journal of Clinical Endocrinology &amp Metabolism (Impact Factor: 6.31). 10/2002; 87(9):4245-51. DOI: 10.1210/jc.2001-010872
Source: PubMed

ABSTRACT A growing number of animal data strongly suggest that a hyporeactive hypothalamus-pituitary adrenal (HPA) axis may be pathologically significant by increasing the susceptibility to chronic inflammation. Following this line of evidence, the specific goal of the present study was to investigate the HPA axis in patients with atopic dermatitis (AD), a chronic allergic inflammatory disease. In addition, the sympathetic adrenomedullary (SAM) system as a second potent immunoregulatory and anti-inflammatory stress-response system has been examined. AD patients (n = 36) and nonatopic control subjects (n = 37) were exposed to a standardized laboratory stressor consisting of a free speech and mental arithmetic task in front of an audience. Cortisol, ACTH, and catecholamine concentrations were assessed before and after the stressor. To investigate feedback sensitivity of the HPA axis, a low dose (0.5 mg) dexamethasone suppression test was also performed. AD patients showed significantly attenuated cortisol and ACTH responses to the stressor, whereas catecholamine levels were significantly elevated in atopic patients. No difference between the experimental groups was found in basal cortisol and ACTH concentrations, whereas basal catecholamine levels were significantly elevated. Analysis of cortisol levels after dexamethasone treatment suggested an intact feedback sensitivity in AD sufferers at the pituitary level. The present findings suggest that patients with AD demonstrate a blunted HPA axis responsiveness with a concurrent overreactivity of the SAM system to psychosocial stress. Considering the important immunoregulatory role of the HPA axis and the SAM system, especially under stressful conditions, an aberrant responsiveness of these neuroendocrine systems may increase the susceptibility to (allergic) inflammation and may be one psychobiological mechanism of stress-related aggravation of the disease.

0 Followers
 · 
136 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Acute psychological stress (PS) mobilizes metabolic responses that are of immediate benefit to the host, but the current medical paradigm holds that PS exacerbates systemic and cutaneous inflammatory disorders. Although the adverse consequences of PS are usually attributed to neuroimmune mechanisms, PS also stimulates an increase in endogenous glucocorticoids (GC) that compromises permeability barrier homeostasis, stratum corneum cohesion, wound healing, and epidermal innate immunity in normal skin. Yet, if such PS-induced increases in GC were uniformly harmful, natural selection should have eliminated this component of the stress response. Hence, we hypothesized here instead that stress-induced elevations in endogenous GC could benefit, rather than aggravate cutaneous function and reduce inflammation in three immunologically-diverse, mouse models of inflammatory diseases. Indeed, rather than aggravating inflammation, superimposed, exogenous (motion-restricted) stress reduced, rather than aggravated inflammation and improved epidermal function in all three models, even normalizing serum IgE levels in the atopic dermatitis model. Elevations in endogenous GC accounted for these apparent benefits, because co-administration of mifepristone prevented stress-induced disease amelioration. Thus, exogenous stress can benefit rather than aggravate cutaneous inflammatory dermatoses through the anti-inflammatory activity of increased endogenous GC.Journal of Investigative Dermatology accepted article preview online, 03 July 2014; doi:10.1038/jid.2014.265.
    Journal of Investigative Dermatology 07/2014; 134(12). DOI:10.1038/jid.2014.265 · 6.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chronic, in particular chronic psychosocial, stress is a burden of modern societies and known to be a risk factor for numerous somatic and affective disorders (in detail referenced below). However, based on the limited existence of appropriate, and clinically relevant, animal models for studying the effects of chronic stress, the detailed behavioral, physiological, neuronal, and immunological mechanisms linking stress and such disorders are insufficiently understood. To date, most chronic stress studies in animals employ intermittent exposure to the same (homotypic) or to different (heterotypic) stressors of varying duration and intensity. Such models are only of limited value, since they do not adequately reflect the chronic and continuous situation that humans typically experience. Furthermore, application of different physical or psychological stimuli renders comparisons to the mainly psychosocial stressors faced by humans, as well as between the different stress studies almost impossible. In contrast, rodent models of chronic psychosocial stress represent situations more akin to those faced by humans and consequently seem to hold more clinical relevance. Our laboratory has developed a model in which mice are exposed to social stress for 19 continuous days, namely the chronic subordinate colony housing (CSC) paradigm, to help bridge this gap. The main aim of the current review article is to provide a detailed summary of the behavioral, physiological, neuronal, and immunological consequences of the CSC paradigm, and wherever possible relate the findings to other stress models and to the human situation.
    Frontiers in Psychiatry 02/2015; 6:18. DOI:10.3389/fpsyt.2015.00018
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Age-related memory decline has been associated with a faulty regulation of the hypothalamus-pituitary-adrenal axis (HPA-axis). The aim of this study was to investigate whether the magnitude of the stress-induced cortisol increase is related to memory performance when memory is measured in non-stressful conditions. To do so, declarative and working memory performance were measured in 31 men and 35 women between 55 and 77 years of age. On a different day, the magnitude of their cortisol response to acute psychosocial stress was measured. The relationship between the cortisol response and memory performance was U shaped: a low cortisol response to stress was related to poorer declarative and working memory performance, whereas those who did not increase their cortisol levels and those who had the largest cortisol increase had better declarative and working memory capabilities. Sex did not moderate these relationships. These results suggest that a low cortisol response to stress could reflect a defective HPA-axis response to stressors that is accompanied by poorer memory performance. Conversely, a high cortisol response seems to reflect a correct functioning of the HPA-axis and may protect against memory deficits in the later stages of human life.
    Frontiers in Aging Neuroscience 07/2014; 6:157. DOI:10.3389/fnagi.2014.00157 · 2.84 Impact Factor

Full-text (2 Sources)

Download
25 Downloads
Available from
Jun 2, 2014