Isomeric acetoxy analogues of rofecoxib: A novel class of highly potent and selective cyclooxygenase-2 inhibitors

Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada.
Bioorganic & Medicinal Chemistry Letters (Impact Factor: 2.42). 11/2002; 12(19):2753-6. DOI: 10.1016/S0960-894X(02)00537-1
Source: PubMed

ABSTRACT A group of isomers possessing a 2-, 3-, or 4-acetoxy moiety on the 3-phenyl substituent of rofecoxib were synthesized that exhibit highly potent, and selective, COX-2 inhibitory activity that have the potential to acetylate the COX-2 isozyme.

Download full-text


Available from: Edward E Knaus, Jan 20, 2014
23 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: A group of rofecoxib analogs, having a sulfonylazide (SO2N3) substituent in place of the methanesulfonyl (SO2CH3) pharmacophore at the meta-position viz 3-(4-methyl, 4-methoxy, or 4-ethoxyphenyl)-4-(3-sulfonylazidophenyl)-2(5H)furanone (7a-c) and para-position viz 3-phenyl-4-(4-sulfonylazidophenyl)-2(5H)furanone (7d), 3-(4-fluoro, or 4-chlorophenyl)-4-(4-sulfonylazidophenyl)-2(5H)furanone (7e-f) of the C–4 phenyl ring, and 4-(1-oxido-4-pyridyl)-3-phenyl-2(5H)furanone (12) were designed and synthesized for evaluation as selective cyclooxygenase-2 (COX-2) inhibitors. In vitro COX-1/COX-2 enzyme inhibition studies showed that 3-phenyl-4-(4-sulfonylazidophenyl)-2(5H)furanone (7d) inhibited COX-1 selectively (COX-1 IC50 = 0.6659 μM; COX-2 IC50 > 100 μM) and 3-(4-fluorophenyl)-4-(4-sulfonylazidophenyl)-2(5H)furanone (7e) inhibited both enzymes (COX-1 IC50 = 0.8494 μM; COX-2 IC50 = 1.7661 μM). A molecular modeling study was performed where 3-(4-fluorophenyl)-4-(4-sulfonylazidophenyl)-2(5H)furanone (7e) was docked in the active site of murine COX-2 isozyme, which showed that the sulfonylazido group inserts deep into the 2°-pocket of COX-2 where it undergoes both H-bonding (Gln192, Phe518) and weak electrostatic (Arg513) interactions.
    Journal of Heterocyclic Chemistry 03/2004; 40(5):861 - 868. DOI:10.1002/jhet.5570400518 · 0.79 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A new class of acyclic (Z)-2-alkyl-1,2-diphenyl-1-(4-methanesulfonylphenyl)ethenes (7) was designed for evaluation as selective cyclooxygenase-2 (COX-2) inhibitors. In vitro COX-1 and COX-2 isozyme inhibition structure-activity studies identified (Z)-1,2-diphenyl-1-(4-methanesulfonylphenyl)oct-1-ene (7d) as a potent COX-2 inhibitor (IC(50) = 0.42 microM) with a high COX-2 selectivity index (SI > 234). In a carrageenan-induced rat paw edema assay, (Z)-7d exhibited excellent antiinflammatory activity (ID(50) = 1.1 mg/kg). The molecular modeling and structure-activity data acquired indicate that (Z)-olefins having cis C-1 4-methanesulfonylphenyl and C-2 unsubstituted phenyl (or 4-acetoxyphenyl) substituents in conjunction with a C-1 phenyl ring and a C-2 alkyl substituent of appropriate length constitute a suitable template for the design of a novel class of acyclic (Z)-2-alkyl-1,1,2-triaryleth-1-ene COX-2 inhibitors.
    Journal of Medicinal Chemistry 11/2004; 47(24):6108-11. DOI:10.1021/jm049523y · 5.45 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have synthesized rigid analogues of combretastatin bearing a furan ring in place of the olefinic bridge. These compounds are cytotoxic at nanomolar concentrations in neuroblastoma cells, display a similar structure-activity relationship compared to combretastatin A4, and inhibit tubulin polymerization. We also show that the furan ring can be further functionalized. Thus, it is possible that combretafurans could act as scaffolds for the development of dual-action antitumoral agents.
    Journal of Medicinal Chemistry 09/2006; 49(17):5372-6. DOI:10.1021/jm060621o · 5.45 Impact Factor
Show more