Age-related total gray matter and white matter changes in normal adult brain. Part I: Volumetric MR imaging analysis

Department of Radiology, University of Pennsylvania Medical Center, Philadelphia, USA.
American Journal of Neuroradiology (Impact Factor: 3.59). 10/2002; 23(8):1327-33.
Source: PubMed


A technique of segmenting total gray matter (GM) and total white matter (WM) in human brain is now available. We investigated the effects of age and sex on total fractional GM (%GM) and total fractional WM (%WM) volumes by using volumetric MR imaging in healthy adults.
Fifty-four healthy volunteers (22 men, 32 women) aged 20-86 years underwent dual-echo fast spin-echo MR imaging. Total GM, total WM, and intracranial space volumes were segmented by using MR image-based computerized semiautomated software. Volumes were normalized as a percentage of intracranial volume (%GM and %WM) to adjust for variations in head size. Age and sex effects were then assessed.
Both %GM and %WM in the intracranial space were significantly less in older subjects (> or =50 years) than in younger subjects (<50 years) (P <.0001 and P =.02, respectively). Consistently, %GM decreased linearly with age, beginning in the youngest subjects. %WM decreased in a quadratic fashion, with a greater rate beginning only in adult midlife. Although larger GM volumes were observed in men before adjustments for cranium size, no significant differences in %GM or %WM were observed between the sexes.
GM volume loss appears to be a constant, linear function of age throughout adult life, whereas WM volume loss seems to be delayed until middle adult life. Both appear to be independent of sex. Quantitative analysis of %GM and %WM volumes can improve our understanding of brain atrophy due to normal aging; this knowledge may be valuable in distinguishing atrophy of disease patterns from characteristics of the normal aging process.

1 Follower
20 Reads
  • Source
    • "A key hallmark is the progressive decline in physiological functions and behavioral capacity, which is observed at various levels of the organism, in particular at the central nervous system (CNS; Smith et al., 2005). These changes can lead to altered behavior, memory impairment, or loss of several control functions (Lipsitz and Goldberger, 1992; Lipsitz, 2002; Glenn et al., 2004). In addition, some responses of the immune system, in special "
    [Show abstract] [Hide abstract]
    ABSTRACT: Aging is the main risk factor for neurodegenerative diseases. In aging, microglia undergo phenotypic changes compatible with their activation. Glial activation can lead to neuroinflammation, which is increasingly accepted as part of the pathogenesis of neurodegenerative diseases, including Alzheimer’s disease (AD). We hypothesize that in aging, aberrant microglia activation leads to a deleterious environment and neurodegeneration. In aged mice, microglia exhibit an increased expression of cytokines and an exacerbated inflammatory response to pathological changes. Whereas LPS increases nitric oxide secretion in microglia from young mice, induction of reactive oxygen species (ROS) predominates in older mice. Furthermore, there is accumulation of DNA oxidative damage in mitochondria of microglia during aging, and also an increased intracellular ROS production. Increased ROS activates the redox-sensitive nuclear factor kappa B, which promotes more neuroinflammation, and can be translated in functional deficits, such as cognitive impairment. Mitochondria-derived ROS and cathepsin B, are also necessary for the microglial cell production of interleukin-1β, a key inflammatory cytokine. Interestingly, whereas the regulatory cytokine TGFβ1 is also increased in the aged brain, neuroinflammation persists. Assessing this apparent contradiction, we have reported that TGFβ1 induction and activation of Smad3 signaling after inflammatory stimulation are reduced in adult mice. Other protective functions, such as phagocytosis, although observed in aged animals, become not inducible by inflammatory stimuli and TGFβ1. Here, we discuss data suggesting that mitochondrial and endolysosomal dysfunction could at least partially mediate age-associated microglial cell changes, and, together with the impairment of the TGFβ1-Smad3 pathway, could result in a reduction of protective activation and a facilitation of cytotoxic activation of microglia, resulting in the promotion of neurodegeneration.
    Frontiers in Aging Neuroscience 08/2015; 7:124. DOI:10.3389/fnagi.2015.00124 · 4.00 Impact Factor
  • Source
    • "We specifically tested whether increased levels of depression would correlate with decreased GMV. Age and whole brain gray matter volume (WBGM) were included as covariates to control for their potentially confounding effects on regional gray matter (Ge et al., 2002). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Major depressive disorder is associated with lower medial prefrontal cortex volumes. The role that gender might play in moderating this relationship and what particular medial prefrontal cortex subregion(s) might be implicated is unclear. Magnetic resonance imaging was used to assess dorsal, ventral, and anterior cingulate regions of the medial prefrontal cortex in a normative sample of male and female adults. The Depression, Anxiety, and Stress Scale (DASS) was used to measure these three variables. Voxel-based morphometry was used to test for correlations between medial prefrontal gray matter volume and depressive traits. The dorsal medial frontal cortex was correlated with greater levels of depression, but not anxiety and stress. Gender moderates this effect: in males greater levels of depression were associated with lower dorsal medial prefrontal volumes, but in females no relationship was observed. The results indicate that even within a non-clinical sample, male participants with higher levels of depressive traits tend to have lower levels of gray matter volume in the dorsal medial prefrontal cortex. Our finding is consistent with low dorsal medial prefrontal volume contributing to the development of depression in males. Future longitudinal work is needed to substantiate this possibility. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
    Psychiatry Research: Neuroimaging 06/2015; 233(2). DOI:10.1016/j.pscychresns.2015.06.005 · 2.42 Impact Factor
  • Source
    • "No significant difference in whole brain volume was found for the early ME compared to control group, t(38) = −0.90, P = 0.373, and the whole brain volume of both groups was within the range previously reported for healthy controls (Allen et al., 2002; Ge et al., 2002) (Table 2). Therefore, whole brain volume was not factored into our analyses. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Purpose Retinoblastoma is a rare eye cancer that generally occurs before 5 years of age and often results in enucleation (surgical removal) of the cancerous eye. In the present study, we sought to determine the consequences of early monocular enucleation on the morphological development of the anterior visual pathway including the optic chiasm and lateral geniculate nucleus. Methods A group of adults who had one eye enucleated early in life due to retinoblastoma was compared to binocularly intact controls. Although structural changes have previously been reported in late enucleation, we also collected data from one late enucleated participant to compare to our early enucleated participants. Measurements of the optic nerves, optic chiasm, optic tracts and lateral geniculate nuclei were evaluated from T1 weighted and proton density weighted images collected from each participant. Results The early monocular enucleation group exhibited overall degeneration of the anterior visual system compared to controls. Surprisingly, however, optic tract diameter and geniculate volume decreases were less severe contralateral to the remaining eye. Consistent with previous research, the late enucleated participant showed no asymmetry and significantly larger volume decreases in both geniculate nuclei compared to controls. Conclusions The novel finding of an asymmetry in morphology of the anterior visual system following long-term survival from early monocular enucleation indicates altered postnatal visual development. Possible mechanisms behind this altered development include recruitment of deafferented cells by crossing nasal fibres and/or geniculate cell retention via feedback from primary visual cortex. These data highlight the importance of balanced binocular input during postnatal maturation for typical anterior visual system morphology.
    Clinical neuroimaging 12/2014; 4:72–81. DOI:10.1016/j.nicl.2013.10.014 · 2.53 Impact Factor
Show more