Article

No evidence for inhibition of ENaC through CFTR-mediated release of ATP.

Department of Physiology and Pharmacology, University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia.
Biochimica et Biophysica Acta (Impact Factor: 4.66). 10/2002; 1565(1):17-28. DOI: 10.1016/S0005-2736(02)00502-3
Source: PubMed

ABSTRACT Both purinergic stimulation and activation of cystic fibrosis transmembrane conductance regulator (CFTR) increases Cl(-) secretion and inhibit amiloride-sensitive Na(+) transport. CFTR has been suggested to conduct adenosine 5'-triphosphate (ATP) or to control ATP release to the luminal side of epithelial tissues. Therefore, a possible mechanism on how CFTR controls the activity of epithelial Na(+) channels (ENaC) could be by release of ATP or uridine 5'-triphosphate (UTP), which would then bind to P2Y receptors and inhibit ENaC. We examined this question in native tissues from airways and colon and in Xenopus oocytes. Inhibition of amiloride-sensitive transport by both CFTR and extracellular nucleotides was observed in colon and trachea. However, nucleotides did not inhibit ENaC in Xenopus oocytes, even after coexpression of P2Y(2) receptors. Using different tools such as hexokinase, the P2Y inhibitor suramin or the Cl(-) channel blocker 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), we did not detect any role of a putative ATP secretion in activation of Cl(-) transport or inhibition of amiloride sensitive short circuit currents by CFTR. In addition, N(2),2'-O-dibutyrylguanosine 3',5'-cyclic monophosphate (cGMP) and protein kinase G (PKG)-dependent phosphorylation or the nucleoside diphosphate kinase (NDPK) do not seem to play a role for the inhibition of ENaC by CFTR, which, however, requires the presence of extracellular Cl(-).

0 Bookmarks
 · 
59 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sodium balance determines the extracellular fluid volume and sets arterial blood pressure (BP). Chronically raised BP (hypertension) represents a major health risk in Western societies. The relationship between BP and renal sodium excretion (the pressure/natriuresis relationship) represents the key element in defining the BP homeostatic set point. The renin-angiotensin-aldosterone system (RAAS) makes major adjustments to the rates of renal sodium secretion, but this system works slowly over a period of hours to days. More rapid adjustments can be made by the sympathetic nervous system, although the kidney can function well without sympathetic nerves. Attention has now focussed on regulatory mechanisms within the kidney, including extracellular nucleotides and the P2 receptor system. Here, we discuss how extracellular ATP can control renal sodium excretion by altering the activity of epithelial sodium channels (ENaC) present in the apical membrane of principal cells. There remains considerable controversy over the molecular targets for released ATP, although the P2Y(2) receptor has received much attention. We review the available data and reflect on our own findings in which ATP-activated P2Y and P2X receptors make adjustments to ENaC activity and therefore sodium excretion.
    Purinergic Signalling 04/2009; 5(4):481-9. · 2.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nucleoside diphosphate kinase (NDPK) (nm23/awd) belongs to a multifunctional family of highly conserved proteins (∼16 to 20 kDa) including two well-characterized isoforms (NDPK-A and -B). NDPK catalyzes the conversion of nucleoside diphosphates to nucleoside triphosphates, regulates a diverse array of cellular events, and can act as a protein histidine kinase. AMP-activated protein kinase (AMPK) is a heterotrimeric protein complex that responds to the cellular energy status by switching off ATP-consuming pathways and switching on ATP-generating pathways when ATP is limiting. AMPK was first discovered as an activity that inhibited preparations of acetyl coenzyme A carboxylase 1 (ACC1), a regulator of cellular fatty acid synthesis. We recently reported that NDPK-A (but not NDPK-B) selectively regulates the α1 isoform of AMPK independently of the AMP concentration such that the manipulation of NDPK-A nucleotide trans-phosphorylation activity to generate ATP enhanced the activity of AMPK. This regulation occurred irrespective of the surrounding ATP concentration, suggesting that “substrate channeling” was occurring with the shielding of NDPK-generated ATP from the surrounding medium. We speculated that AMPK α1 phosphorylated NDPK-A during their interaction, and here, we identify two residues on NDPK-A targeted by AMPK α1 in vivo. We find that NDPK-A S122 and S144 are phosphorylated by AMPK α1 and that the phosphorylation status of S122, but not S144, determines whether substrate channeling can occur. We report the cellular effects of the S122 mutation on ACC1 phosphorylation and demonstrate that the presence of E124 (absent in NDPK-B) is necessary and sufficient to permit both AMPK α1 binding and substrate channeling.
    Molecular and cellular biology 10/2008; 28(18):5827. · 6.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: 1. The epithelial Na(+) channel (ENaC) is a major conductive pathway that transports Na(+) across the apical membrane of the distal nephron, the respiratory tract, the distal colon and the ducts of exocrine glands. The ENaC is regulated by hormonal and humoral factors, including extracellular nucleotides that are available from the epithelial cells themselves. 2. Extracellular nucleotides, via the P2Y2 receptors (P2Y2Rs) at the basolateral and apical membrane of the epithelia, trigger signalling systems that inhibit the activity of the ENaC and activate Ca(2+) -dependent Cl(-) secretion. 3. Recent data from our laboratory suggest that stimulation of the P2Y2Rs at the basolateral membrane inhibits ENaC activity by a signalling mechanism that involves G beta gamma subunits freed from a pertussis toxin (PTX)-sensitive G-protein and phospholipase C (PLC) beta 4. A similar signalling mechanism is also partially responsible for inhibition of the ENaC during activation of apical P2Y2Rs. 4. Stimulation of apical P2Y2Rs also activates an additional signalling mechanism that inhibits the ENaC and involves the activated Galpha subunit of a PTX-insensitive G-protein and activation of an unidentified PLC. The effect of this PTX-insensitive system requires the activity of the basolateral Na(+)/K(+)/2Cl(-) cotransporter.
    Clinical and Experimental Pharmacology and Physiology 07/2009; 36(10):1016-22. · 2.41 Impact Factor

Full-text (2 Sources)

View
31 Downloads
Available from
May 28, 2014