Ionic liquid-coated enzyme for biocatalysis in organic solvent.

Department of Chemistry, Division of Molecular and Life Sciences, Pohang University of Science and Technology, San 31 Hyojadong, Pohang, Kyungbuk 790-784, Korea.
The Journal of Organic Chemistry (Impact Factor: 4.56). 10/2002; 67(19):6845-7. DOI: 10.1021/jo026116q
Source: PubMed

ABSTRACT Ionic liquid-coated enzyme (ILCE) is described as a useful catalyst for biocatalysis in organic solvent. An ionic liquid, [PPMIM]-[PF(6)] (1, [PPMIM] = 1-(3'-phenylpropyl)-3-methylimidazolium), which is solid at room temperature and becomes liquid above 53 degrees C, was synthesized in two steps from N-methylimidazole. The coating of enzyme was done by simply mixing commercially available enzyme with 1 in the liquid phase above 53 degrees C and then allowing the mixture to cool. A representative ILCE, prepared with a lipase from Pseudomonas cepacia, showed markedly enhanced enantioselectivity without losing any significant activity.

  • [Show abstract] [Hide abstract]
    ABSTRACT: One of the important strategies for modulating enzyme activity is the use of additives to affect their microenvironment and subsequently make them suitable for use in different industrial processes. Ionic liquids (ILs) have been investigated extensively in recent years as such additives. They are a class of solvents with peculiar properties and a "green" reputation in comparison to classical organic solvents. ILs as co-solvents in aqueous systems have an effect on substrate solubility, enzyme structure and on enzyme-water interactions. These effects can lead to higher reaction yields, improved selectivity, and changes in substrate specificity, and thus there is great potential for IL incorporation in biocatalysis. The use of surfactants, which are usually denaturating agents, as additives in enzymatic reactions is less reviewed in recent years. However, interesting modulations in enzyme activity in their presence have been reported. In the case of surfactants there is a more pronounced effect on the enzyme structure, as can be observed in a number of crystal structures obtained in their presence. For each additive and enzymatic process, a specific optimization process is needed and there is no one-fits-all solution. Combining ILs and surfactants in either mixed micelles or water-in-IL microemulsions for use in enzymatic reaction systems is a promising direction which may further expand the range of enzyme applications in industrial processes. While many reviews exist on the use of ILs in biocatalysis, the present review centers on systems in which ILs or surfactants were able to modulate and improve the natural activity of enzymes in aqueous systems.
    Applied Microbiology and Biotechnology 11/2013; · 3.69 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ionic liquids (ILs) have been widely recognized as environmentally benign solvents. Their unique properties, including negligible vapor pressure, non-flammability, a wide liquid range and their tunable physicochemical properties by proper selection of cations and anions, make them attractive green solvents in a variety of fields such as organic synthesis/catalysis, extraction/ separation, and electrochemistry, amongst others. In this paper, the recent technological developments and their prospects in the application of ILs in microbiology and biochemical engineering, including enzymatic reactions, protein folding/refolding and biomass dissolution, are discussed.
    Korean Journal of Microbiology and Biotechnology 01/2013; 41(1).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Room temperatures ionic liquids are considered as miraculous solvents for biological system. Due to their inimitable properties and large variety of applications, they have been widely used in enzyme catalysis and protein stability and separation. The related information present in the current review is helpful to the researchers working in the field of biotechnology and biochemistry to design or choose an ionic liquid that can serve as a noble and selective solvent for any particular enzymatic reaction, protein preservation and other protein based applications. We have extensively analyzed the methods used for studying the protein-IL interaction which is useful in providing information about structural and conformational dynamics of protein. This can be helpful to develop and understanding about the effect of ionic liquids on stability and activity of proteins. In addition, the affect of physico-chemical properties of ionic liquids, viz. hydrogen bond capacity and hydrophobicity on protein stability are discussed.
    Applied biochemistry and biotechnology 03/2014; · 1.94 Impact Factor


Available from