Circulating levels of IGF-1 directly regulate bone growth and density

Section on Cellular and Molecular Physiology, Clinical Endocrinology Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Health, Bethesda, Maryland 20892, USA.
Journal of Clinical Investigation (Impact Factor: 13.77). 10/2002; 110(6):771-81. DOI: 10.1172/JCI15463
Source: PubMed

ABSTRACT IGF-1 is a growth-promoting polypeptide that is essential for normal growth and development. In serum, the majority of the IGFs exist in a 150-kDa complex including the IGF molecule, IGF binding protein 3 (IGFBP-3), and the acid labile subunit (ALS). This complex prolongs the half-life of serum IGFs and facilitates their endocrine actions. Liver IGF-1-deficient (LID) mice and ALS knockout (ALSKO) mice exhibited relatively normal growth and development, despite having 75% and 65% reductions in serum IGF-1 levels, respectively. Double gene disrupted mice were generated by crossing LID+ALSKO mice. These mice exhibited further reductions in serum IGF-1 levels and a significant reduction in linear growth. The proximal growth plates of the tibiae of LID+ALSKO mice were smaller in total height as well as in the height of the proliferative and hypertrophic zones of chondrocytes. There was also a 10% decrease in bone mineral density and a greater than 35% decrease in periosteal circumference and cortical thickness in these mice. IGF-1 treatment for 4 weeks restored the total height of the proximal growth plate of the tibia. Thus, the double gene disruption LID+ALSKO mouse model demonstrates that a threshold concentration of circulating IGF-1 is necessary for normal bone growth and suggests that IGF-1, IGFBP-3, and ALS play a prominent role in the pathophysiology of osteoporosis.

Download full-text


Available from: Jan Frystyk, Jun 30, 2015
1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite its natural healing potential, bone is unable to regenerate sufficient tissue within critical-sized defects, resulting in a non-union of bone ends. As a consequence, interventions are required to replace missing, damaged or diseased bone. Bone grafts have been widely employed for the repair of such critical-sized defects. However, the well-documented drawbacks associated with autografts, allografts and xenografts have motivated the development of alternative treatment options. Traditional tissue engineering strategies have typically attempted to direct in vitro bone-like matrix formation within scaffolds prior to implantation into bone defects, mimicking the embryological process of intramembranous ossification (IMO). Tissue-engineered constructs developed using this approach often fail once implanted, due to poor perfusion, leading to avascular necrosis and core degradation. As a result of such drawbacks, an alternative tissue engineering strategy, based on endochondral ossification (ECO), has begun to emerge, involving the use of in vitro tissue-engineered cartilage as a transient biomimetic template to facilitate bone formation within large defects. This is driven by the hypothesis that hypertrophic chondrocytes can secrete angiogenic and osteogenic factors, which play pivotal roles in both the vascularization of constructs in vivo and the deposition of a mineralized extracellular matrix, with resulting bone deposition. In this context, this review focuses on current strategies taken to recapitulate ECO, using a range of distinct cells, biomaterials and biochemical stimuli, in order to facilitate in vivo bone formation. Copyright © 2014 John Wiley & Sons, Ltd.
    Journal of Tissue Engineering and Regenerative Medicine 06/2014; DOI:10.1002/term.1918 · 4.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Physical stimuli play a crucial role in skeletogenesis and osteochondral repair and regeneration. Although the periosteum and periosteum-derived cells offer considerable therapeutic potential, the molecular mechanisms that control their differentiation are still not fully understood. As an initial case study, this work explores the hypothesis that dynamic compression might selectively enhance chondrogenic and/or osteogenic differentiation in human periosteal cells from two donors. Donor derived human periosteal cells were expanded in monolayer culture before seeding in 3% (w/v) agarose constructs. The ability of this in vitro culture model to support cell viability, chondrogenesis, and mechanotransduction was optimised. The time course of early chondrogenic differentiation was assessed by real time RT-PCR of mRNA expression levels for bone and cartilage specific gene markers. Intermittent dynamic compression (1 Hz, 15% strain) was applied to constructs, in the presence or absence of 10 ng/ml TGF-β3, for up to 4 days. The combined effect of TGF-β3 and compressive loading on the expression levels of the Sox-9, Runx-2, ALP, Collagen X, and collagen type I genes was donor dependent. A synergistic effect was noted only in donor two, with peak mRNA expression levels at 24 h, particularly Sox-9 which increased 59.0-fold. These findings suggest that the interactions between mechanical stimuli and TGF-β signalling may be an important mechanotransduction pathway for human periosteal cells and that, importantly, this cellular mechanosensitivity varies between donors.
    07/2012; 11:72-81. DOI:10.1016/j.jmbbm.2011.06.015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Growth hormone and insulin-like growth factor-1 (IGF-1) are essential for the achievement of normal longitudinal bone growth and bone mass. Preclinical studies using various knockout models have shown that both endocrine (mostly liver-derived) IGF-1 and bone-derived IGF-1 contribute to normal longitudinal skeletal growth and cortical bone size. Since bone size is an important determinant of bone strength, and hence fracture risk, we evaluated the predictive role of serum IGF-1 for fracture risk. The population-based Osteoporotic Fractures in Men Sweden cohort recently showed for the first time that older men with low serum IGF-1 levels have an increased fracture risk, especially for the two most important fracture types, hip and vertebral fractures. This association between serum IGF-1 and incident fracture risk is partly mediated via bone mineral density. Future studies are required to identify the mechanisms by which endocrine and local IGF-1 regulate skeletal growth and bone size. In addition, possible mediators affecting the impact of IGF-1 on fractures in men remain to be elucidated.
    Frontiers in Endocrinology 03/2012; 3:51. DOI:10.3389/fendo.2012.00051