Article

Three somatic genetic biomarkers and covariates in radiation-exposed Russian cleanup workers of the chernobyl nuclear reactor 6-13 years after exposure.

Biology and Biotechnology Research Program, Lawrence Livermore National Laboratory, California 94550, USA.
Radiation Research (Impact Factor: 2.45). 11/2002; 158(4):424-42.
Source: PubMed

ABSTRACT Three somatic mutation assays were evaluated in men exposed to low-dose, whole-body, ionizing radiation. Blood samples were obtained between 1992 and 1999 from 625 Russian Chernobyl cleanup workers and 182 Russian controls. The assays were chromosome translocations in lymphocytes detected by FISH, hypoxanthine phosphoribosyltransferase (HPRT) mutant frequency in lymphocytes by cloning, and flow cytometic assay for glycophorin A (GPA) variant frequency of both deletion (N/Ø) and recombination (N/N) events detected in erythrocytes. Over 30 exposure and lifestyle covariates were available from questionnaires. Among the covariates evaluated, some increased (e.g. age, smoking) and others decreased (e.g. date of sample) biomarker responses at a magnitude comparable to Chernobyl exposure. When adjusted for covariates, exposure at Chernobyl was a statistically significant factor for translocation frequency (increase of 30%, 95% CI of 10%-53%, P = 0.002) and HPRT mutant frequency (increase of 41%, 95% CI of 19%-66%, P < 0.001), but not for either GPA assay. The estimated average dose for the cleanup workers based on the average increase in translocations was 9.5 cGy. Translocation analysis is the preferred biomarker for low-dose radiation dosimetry given its sensitivity, relatively few covariates, and dose-response data. Based on this estimated dose, the risk of exposure-related cancer is expected to be low.

0 Followers
 · 
133 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rapid and reliable methods for performing biological dosimetry are of paramount importance in the event of a large-scale nuclear event. Traditional dosimetry approaches lack the requisite rapid assessment capability, ease of use, portability and low cost, which are factors needed for triaging a large number of victims. Here we describe the results of experiments in which mice were acutely exposed to (60)Co gamma rays at doses of 0 (control) to 10 Gy. Blood was obtained from irradiated mice 0.5, 1, 2, 3, 5, and 7 days after exposure. mRNA expression levels of 106 selected genes were obtained by reverse-transcription real time PCR. Stepwise regression of dose received against individual gene transcript expression levels provided optimal dosimetry at each time point. The results indicate that only 4-7 different gene transcripts are needed to explain ≥ 0.69 of the variance (R(2)), and that receiver-operator characteristics, a measure of sensitivity and specificity, of ≥ 0.93 for these statistical models were achieved at each time point. These models provide an excellent description of the relationship between the actual and predicted doses up to 6 Gy. At doses of 8 and 10 Gy there appears to be saturation of the radiation-response signals with a corresponding diminution of accuracy. These results suggest that similar analyses in humans may be advantageous for use in a field-portable device designed to assess exposures in mass casualty situations.
    PLoS ONE 12/2013; 8(12):e83390. DOI:10.1371/journal.pone.0083390 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Epigenetic changes underlie developmental and age related biology. Promising epidemiologic research implicates epigenetics in disease risk and progression, and suggests epigenetic status depends on environmental risks as well as genetic predisposition. Epigenetics may represent a mechanistic link between environmental exposures, or genetics, and many common diseases, or may simply provide a quantitative biomarker for exposure or disease for areas of epidemiology currently lacking such measures. This great promise is balanced by issues related to study design, measurement tools, statistical methods, and biological interpretation that must be given careful consideration in an epidemiologic setting. This article describes the promises and challenges for epigenetic epidemiology, and suggests directions to advance this emerging area of molecular epidemiology. Environ. Mol. Mutagen., 2014. © 2014 Wiley Periodicals, Inc.
    Environmental and Molecular Mutagenesis 04/2014; 55(3). DOI:10.1002/em.21850 · 2.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rapid and reliable methods for conducting biological dosimetry are a necessity in the event of a large-scale nuclear event. Conventional biodosimetry methods lack the speed, portability, ease of use, and low cost required for triaging numerous victims. Here we address this need by showing that polymerase chain reaction (PCR) on a small number of gene transcripts can provide accurate and rapid dosimetry. The low cost and relative ease of PCR compared with existing dosimetry methods suggest that this approach may be useful in mass-casualty triage situations. Human peripheral blood from 60 adult donors was acutely exposed to cobalt-60 gamma rays at doses of 0 (control) to 10 Gy. mRNA expression levels of 121 selected genes were obtained 0.5, 1, and 2 days after exposure by reverse-transcriptase real-time PCR. Optimal dosimetry at each time point was obtained by stepwise regression of dose received against individual gene transcript expression levels. Only 3 to 4 different gene transcripts, ASTN2, CDKN1A, GDF15, and ATM, are needed to explain ≥0.87 of the variance (R(2)). Receiver-operator characteristics, a measure of sensitivity and specificity, of 0.98 for these statistical models were achieved at each time point. The actual and predicted radiation doses agree very closely up to 6 Gy. Dosimetry at 8 and 10 Gy shows some effect of saturation, thereby slightly diminishing the ability to quantify higher exposures. Analyses of these gene transcripts may be advantageous for use in a field-portable device designed to assess exposures in mass casualty situations or in clinical radiation emergencies.
    International journal of radiation oncology, biology, physics 01/2014; 88(4). DOI:10.1016/j.ijrobp.2013.11.248 · 4.18 Impact Factor

Preview

Download
4 Downloads
Available from