Article

Morphological characterization of in vitro neuronal networks.

School of Physics and Astronomy, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel.
Physical Review E (Impact Factor: 2.31). 09/2002; 66(2 Pt 1):021905. DOI: 10.1103/PhysRevE.66.021905
Source: PubMed

ABSTRACT We use in vitro neuronal networks as a model system for studying self-organization processes in the nervous system. We follow the neuronal growth process, from isolated neurons to fully connected two-dimensional networks. The mature networks are mapped into connected graphs and their morphological characteristics are measured. The distributions of segment lengths, node connectivity, and path length between nodes, and the clustering coefficient of the networks are used to characterize network morphology and to demonstrate that our networks fall into the category of small-world networks.

1 Bookmark
 · 
98 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Biological systems that build transport networks, such as trail-laying ants and the slime mould Physarum, can be described in terms of reinforced random walks. In a reinforced random walk, the route taken by 'walking' particles depends on the previous routes of other particles. Here, we present a novel form of random walk in which the flow of particles provides this reinforcement. Starting from an analogy between electrical networks and random walks, we show how to include current reinforcement. We demonstrate that current-reinforcement results in particles converging on the optimal solution of shortest path transport problems, and avoids the self-reinforcing loops seen in standard density-based reinforcement models. We further develop a variant of the model that is biologically realistic, in the sense that the particles can be identified as ants and their measured density corresponds to those observed in maze-solving experiments on Argentine ants. For network formation, we identify the importance of nonlinear current reinforcement in producing networks that optimize both network maintenance and travel times. Other than ant trail formation, these random walks are also closely related to other biological systems, such as blood vessels and neuronal networks, which involve the transport of materials or information. We argue that current reinforcement is likely to be a common mechanism in a range of systems where network construction is observed.
    Journal of The Royal Society Interface 03/2013; 10(80):20120864. · 4.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Graph theoretical approaches have become a powerful tool for investigating the architecture and dynamics of complex networks. The topology of network graphs revealed small-world properties for very different real systems among these neuronal networks. In this study, we observed the early development of mouse retinal ganglion cell (RGC) networks in vitro using timelapse video microscopy. By means of a time-resolved graph theoretical analysis of the connectivity, shortest path length and the edge length, we were able to discover the different stages during the network formation. Starting from single cells, at the first stage neurons connected to each other ending up in a network with maximum complexity. In the further course, we observed a simplification of the network which manifested in a change of relevant network parameters such as the minimization of the path length. Moreover, we found that RGC networks self-organized as small-world networks at both stages; however, the optimization occurred only in the second stage.
    New Journal of Physics 02/2013; 15:025029. · 4.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In vitro primary cultures of dissociated invertebrate neurons from locust ganglia are used to experimentally investigate the morphological evolution of assemblies of living neurons, as they self-organize from collections of separated cells into elaborated, clustered, networks. At all the different stages of the culture's development, identification of neurons' and neurites' location by means of a dedicated software allows to ultimately extract an adjacency matrix from each image of the culture. In turn, a systematic statistical analysis of a group of topological observables grants us the possibility of quantifying and tracking the progression of the main network's characteristics during the self-organization process of the culture. Our results point to the existence of a particular state corresponding to a small-world network configuration, in which several relevant graph's micro- and meso-scale properties emerge. Finally, we identify the main physical processes ruling the culture's morphological transformations, and embed them into a simplified growth model qualitatively reproducing the overall set of experimental observations.
    PLoS ONE 01/2014; 9(1):e85828. · 3.73 Impact Factor

Full-text

View
1 Download
Available from