Organization of the mouse Ruk locus and expression of isoforms in mouse tissues

The University of Edinburgh, Edinburgh, Scotland, United Kingdom
Gene (Impact Factor: 2.08). 08/2002; 295(1):13-17. DOI: 10.1016/S0378-1119(02)00821-1
Source: PubMed

ABSTRACT Ruk is a recently identified gene with a complex pattern of expression in mammalian cells and tissues. Multiple Ruk transcripts and several protein isoforms have been detected in various types of cells. Ruk proteins have multidomain organization characteristic of adapter proteins involved in regulation of signal transduction. Interaction of some Ruk isoforms with several signalling proteins, including the p85 regulatory subunit of the Class IA PI 3-kinase, c-Cbl and Grb2, has been demonstrated. Ruk(l), an isoform with three SH3 domains, inhibits lipid kinase activity of the PI 3-kinase in vitro; overexpression of this protein induces apoptotic cell death of primary neurons in culture and changes in membrane trafficking in other cultured cells. However, shorter isoforms of Ruk block pro-apoptotic effect of Ruk(l), suggesting that expression of different combinations of Ruk proteins in cells could be involved in the regulation of their survival and other intracellular processes. To understand the mechanism of differential expression of Ruk proteins we studied organization of the mouse Ruk gene and its transcripts. Twenty-four exons of the Ruk gene span over 320 kb of the mouse chromosome X. Analysis of cDNA clones, ESTs and products of RT-PCR amplifications with different combinations of primers revealed how alternative splicing and promoter usage generate a variety of Ruk transcripts and encoded protein isoforms in different mouse tissues.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Conditional deletion of the tumour suppressor gene Apc within the murine intestine results in acute Wnt signalling activation. The associated over-expression of a myriad of Wnt signalling target genes yields phenotypic alterations that encompass many of the hallmarks of neoplasia. Previous transcriptomic analysis aimed at identifying genes that potentially play an important role in this process, inferred the Hormonally upregulated Neu-associated kinase (HUNK/Mak-v/Bstk1) gene as a possible candidate. Hunk is a SNF1 (sucrose non fermenting 1)-related serine/threonine kinase with a proposed association with many different tumour types, including colorectal cancer. Here we describe the generation of a novel Hunk kinase deficient mouse which has been used to investigate the involvement of Hunk-kinase activity in intestinal homeostasis and tumourigenesis. We show that in the morphologically normal intestine, Hunk-kinase negatively regulates epithelial cell proliferation. However, the increase in cell proliferation observed in the Hunk kinase deficient intestine is counteracted by increased cell migration, thereby maintaining intestinal homeostasis. Using qRT-PCR, we further demonstrate that Hunk is significantly over-expressed in Apc deficient / Wnt-signalling activated intestinal tissue. Using the classical intestinal tumourigenesis Apc (Min) mouse model we show that loss of Hunk-kinase activity significantly reduced tumour initiation rates in the small intestine. However, an accompanying increase in the size of the tumours counteracts the impact this has on overall tumour burden or subsequently survival. In the intestinal setting we demonstrate that Hunk has a role in normal intestinal proliferation and homeostasis and, although it does not alter overall survival rates, activity of this kinase does impact on tumour initiation rates during the early stages in tumourigenesis in the small intestine.
    BMC Cancer 12/2015; 15(1):1087. DOI:10.1186/s12885-015-1087-2 · 3.32 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: MAGUK Inverted 2 (MAGI-2) is a PTEN-interacting scaffold protein implicated in cancer on the basis of rare, recurrent genomic translocations and deletions in various tumors. In the renal glomerulus, MAGI-2 is exclusively expressed in podocytes, specialized cells forming part of the glomerular filter, where it interacts with the slit diaphragm protein nephrin. To further explore MAGI-2 function, we generated Magi-2-KO mice through homologous recombination by targeting an exon common to all three alternative splice variants. Magi-2 null mice presented with progressive proteinuria as early as 2 wk postnatally, which coincided with loss of nephrin expression in the glomeruli. Magi-2-null kidneys revealed diffuse podocyte foot process effacement and focal podocyte hypertrophy by 3 wk of age, as well as progressive podocyte loss. By 5.5 wk, coinciding with a near-complete loss of podocytes, Magi-2-null mice developed diffuse glomerular extracapillary epithelial cell proliferations, and died of renal failure by 3 mo of age. As confirmed by immunohistochemical analysis, the proliferative cell populations in glomerular lesions were exclusively composed of activated parietal epithelial cells (PECs). Our results reveal that MAGI-2 is required for the integrity of the kidney filter and podocyte survival. Moreover, we demonstrate that PECs can be activated to form glomerular lesions resembling a noninflammatory glomerulopathy with extensive extracapillary proliferation, sometimes resembling crescents, following rapid and severe podocyte loss.
    Proceedings of the National Academy of Sciences 09/2014; 111(41). DOI:10.1073/pnas.1417297111 · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Reelin-Dab1 signaling is indispensable for proper positioning of neurons in mammalian brain. Reelin is a glycoprotein secreted from Cajal-Reztuis cells in marginal zone of cerebral cortex, and its receptors are Apolipoprotein E receptor 2 (ApoER2) or very low density lipoprotein receptor (VLDLR) expressed on migrating neurons. When Reelin binds to ApoER2 or VLDLR, an adaptor protein Dab1 bound to the receptors undergoes Tyr phosphorylation that is essential for Reelin signaling. We reported previously that Cdk5-p35 phosphorylates Dab1 at Ser400 and Ser491 and the phosphorylation regulates its binding to CIN85, which is an SH3-containing multiadaptor protein involved in endocytic downregulation of receptor-tyrosine kinases. However, the interaction of CIN85 with Dab1 has not been addressed in neurons. We examined here a possibility that CIN85 has a role in Reelin signaling. We found nonpho-sphorylated Dab1-mediated colocalization of CIN85 with ApoER2. The colocalization of CIN85 with ApoER2 was increased in neurons stimulated with Reelin repeats 3-6, an active Reelin fragment. The stimulation recruited CIN85 to domains in plasma membrane where it colocalized with ApoER2 and Dab1 and then to EEA1-labeled early endosomes in the cytoplasm. In addition, Tyr phosphorylation of Dab1 strengthened the binding to CIN85. These results suggest that CIN85 participates in Reelin signaling through the binding to Dab1.
    Genes to Cells 03/2013; DOI:10.1111/gtc.12045 · 2.86 Impact Factor