The HtrA1 serine protease is down-regulated during human melanoma progression and represses growth of metastatic melanoma cells

Laboratory 'C', CRS, Regina Elena Cancer Institute, Rome, Italy.
Oncogene (Impact Factor: 8.56). 10/2002; 21(43):6684-8. DOI: 10.1038/sj.onc.1205911
Source: PubMed

ABSTRACT Differential gene expression of cell lines derived from a malignant melanoma or its autologous lymph node metastasis using cDNA arrays indicated down-regulation of PRSS11, a gene encoding the serine protease HtrA1, a homolog of the Escherichia coli protease HtrA, in the metastatic line. Stable PRSS11 overexpression in the metastatic cell line strongly inhibited proliferation, chemoinvasion and Nm23-H1 protein expression in vitro, as well as cell growth in vivo in nu/nu mice. A polyclonal anti-HtrA1 serum demonstrated a significantly higher expression in primary melanomas when compared to unrelated metastatic lesions in a human melanoma tissue array, and down-modulation of HtrA1 expression in autologous lymph node melanoma metastases in seven out of 11 cases examined. These results suggest that down-regulation of PRSS11 and HtrA1 expression may represent an indicator of melanoma progression.

Download full-text


Available from: Marco G Paggi, Jul 01, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this study was to determine if loss of serine protease HtrA1 in endometrial cancer will promote the invasive potential of EC cell lines. Western blot analysis and immunohistochemistry methods were used to determine HtrA1 expression in EC cell lines and primary tumors, respectively. Migration, invasion assays and in vivo xenograft experiment were performed to compare the extent of metastasis between HtrA1 expressing and HtrA1 knocked down clones. Western blot analysis of HtrA1 in 13 EC cell lines revealed complete loss of HtrA1 expression in all seven papillary serous EC cell lines. Downregulation of HtrA1 in Hec1A and Hec1B cell lines resulted in a three- to fourfold increase in the invasive potential. Exogenous expression of HtrA1 in Ark1 and Ark2 cells resulted in three- to fourfold decrease in both invasive and migration potential of these cells. There was an increased rate of metastasis to the lungs associated with HtrA1 downregulation in Hec1B cells compared to control cells with endogenous HtrA1 expression. Enhanced expression of HtrA1 in Ark2 cells resulted in significantly less tumor nodules metastasizing to the lungs compared to parental or protease deficient (SA mutant) Ark2 cells. Immunohistochemical analysis showed 57% (105/184) of primary EC tumors had low HtrA1 expression. The association of low HtrA1 expression with high-grade endometrioid tumors was statistically significant (P = 0.016). Collectively, these data indicate loss of HtrA1 may contribute to the aggressiveness and metastatic ability of endometrial tumors.
    Clinical Cancer Research 02/2011; 17(3):427-36. DOI:10.1158/1078-0432.CCR-09-3069 · 8.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: HtrA which is characterized by the combination of a trypsin-like catalytic domain with at least one C-terminal PDZ domain is a highly conserved family of serine proteases found in a wide range of organisms. However the identified HtrA family numbers varies among spesies, for example the number of mammalian, Eschericia coli, fruit fly-HtrA family are 4, 3 and 1 gene respectively. One gene is predicted exist in zebrafish. Since no complete information available on zebrafish HtrA, in this paper zebrafish HtrA (zHtrA) gene was analyzed. The zHtrA is belonged to HtrA1 member and predicted encodes 478 amino acids with a signal peptide, a IGF binding domain, a Kazal-type inhibitor domain in the up stream of HtrA-bacterial homolog. At the amino acid sequence the zHtrA1 showed the 69%, 69%, 68%, 54% and 54% with the rat HtrA1, mouse HtrA1, human HtrA1, human HtrA3 and mouse HtrA4 respectively. The zHtrA1 is firstly expressed at 60 hpf and mainly in the vertebral rudiments in the tail region.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ynm3 is the only budding yeast protein possessing a combination of serine protease and postsynaptic density 95/disc-large/zona occludens domains, a defining feature of the high temperature requirement A (HtrA) protein family. The bacterial HtrA/DegP is involved in protective stress response to aid survival at higher temperatures. The role of mammalian mitochondrial HtrA2/Omi in protein quality control is unclear, although loss of its protease activity results in susceptibility toward Parkinson's disease, in which mitochondrial dysfunction and impairment of protein folding and degradation are key pathogenetic features. We studied the role of the budding yeast HtrA, Ynm3, with respect to unfolding stresses. Similar to Escherichia coli DegP, we find that Ynm3 is a dual chaperone-protease. Its proteolytic activity is crucial for cell survival at higher temperature. Ynm3 also exhibits strong general chaperone activity, a novel finding for a eukaryotic HtrA member. We propose that the chaperone activity of Ynm3 may be important to improve the efficiency of proteolysis of aberrant proteins by averting the formation of nonproductive toxic aggregates and presenting them in a soluble state to its protease domain. Suppression studies with Deltaynm3 led to the discovery of chaperone activity in a nucleolar peptidyl-prolyl cis-trans isomerase, Fpr3, which could partly relieve the heat sensitivity of Deltaynm3.
    Molecular biology of the cell 11/2008; 20(1):68-77. DOI:10.1091/mbc.E08-02-0178 · 5.98 Impact Factor