Article

P21-activated kinase 4 interacts with integrin alpha v beta 5 and regulates alpha v beta 5-mediated cell migration.

Karolinska Institutet, Department of Microbiology, Pathology, and Immunology, SE-141 86 Huddinge, Sweden.
The Journal of Cell Biology (Impact Factor: 9.69). 10/2002; 158(7):1287-97.
Source: PubMed

ABSTRACT p21-activated kinase 1 (PAK1) can affect cell migration (Price et al., 1998; del Pozo et al., 2000) and modulate myosin light chain kinase and LIM kinase, which are components of the cellular motility machinery (Edwards, D.C., L.C. Sanders, G.M. Bokoch, and G.N. Gill. 1999. Nature Cell Biol. 1:253-259; Sanders, L.C., F. Matsumura, G.M. Bokoch, and P. de Lanerolle. 1999. SCIENCE: 283:2083-2085). We here present a novel cell motility pathway by demonstrating that PAK4 directly interacts with an integrin intracellular domain and regulates carcinoma cell motility in an integrin-specific manner. Yeast two-hybrid screening identified PAK4 binding to the cytoplasmic domain of the integrin beta 5 subunit, an association that was also found in mammalian cells between endogenous PAK4 and integrin alpha v beta 5. Furthermore, we mapped the PAK4 binding to the membrane-proximal region of integrin beta 5, and identified an integrin-binding domain at aa 505-530 in the COOH terminus of PAK4. Importantly, engagement of integrin alpha v beta 5 by cell attachment to vitronectin led to a redistribution of PAK4 from the cytosol to dynamic lamellipodial structures where PAK4 colocalized with integrin alpha v beta 5. Functionally, PAK4 induced integrin alpha v beta 5-mediated, but not beta1-mediated, human breast carcinoma cell migration, while no changes in integrin cell surface expression levels were observed. In conclusion, our results demonstrate that PAK4 interacts with integrin alpha v beta 5 and selectively promotes integrin alpha v beta 5-mediated cell migration.

Full-text

Available from: Zhilun Li, Feb 27, 2014
0 Followers
 · 
92 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The p21-activated serine-threonine kinase (PAK1) regulates cell motility and adhesion. We have previously shown that the prolactin (PRL)-activated tyrosine kinase JAK2 phosphorylates PAK1 in vivo and in vitro and identified tyrosines 153, 201, and 285 in PAK1 as sites of JAK2 tyrosyl phosphorylation. Here, we further investigate the role of the tyrosyl phosphorylated PAK1 (pTyr-PAK1) in regulation of cell adhesion. We use human breast cancer T47D cell lines that stably overexpress PAK1 wild type or PAK1 Y3F mutant in which these 3 JAK2 phosphorylation sites were mutated to phenylalanine. We demonstrate that PRL/JAK2-dependent phosphorylation of these tyrosines promotes a motile phenotype in the cells upon adhesion, participates in regulation of cell adhesion on collagen IV, and is required for maximal PAK1 kinase activity. Down-regulation of PAK1 abolishes the effect of PAK1 on cell adhesion. We show that the tyrosyl phosphorylation of PAK1 promotes PAK1 binding to β-PAK1-interacting guanine-nucleotide exchange factor (βPIX) and G protein-coupled receptor kinase-interacting target 1 (GIT1), phosphorylation of paxillin on Ser273, and formation and distribution of adhesion complexes. Using phosphospecific antibodies (Abs) directed to single phosphorylated tyrosines on PAK1, we identified Tyr285 as a site of PRL-dependent phosphorylation of PAK1 by JAK2. Furthermore, using PAK1 Y285F mutant, we provide evidence for a role of pTyr285 in cell adhesion, enhanced βPIX/GIT1 binding, and adhesion turnover. Our immunohistochemistry analysis demonstrates that pTyr285- PAK1 may modulate PAK1 signaling during tumor progression.-Hammer, A., Oladimeji, P., Casas, L. E. D. L., Diakonova, M. Phosphorylation of tyrosine 285 of PAK1 facilitates βPIX/GIT1 binding and adhesion turnover. © FASEB.
    The FASEB Journal 12/2014; 29(3). DOI:10.1096/fj.14-259366 · 5.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: P-21 activated kinases (PAKs) are effectors of Rac1/Cdc42 which coordinate signals from the cell membrane to the nucleus. Activation of PAKs drive important signalling pathways including mitogen activated protein kinase, phospoinositide 3-kinase (PI3K/AKT), NF-κB and Wnt/β-catenin. Intestinal PAK1 expression increases with inflammation and malignant transformation, although the biological relevance of PAKs in the development and progression of GI disease is only incompletely understood. This review highlights the importance of altered PAK activation within GI inflammation, emphasises its effect on oncogenic signalling and discusses PAKs as therapeutic targets of chemoprevention.
    Gut 05/2014; 63(7). DOI:10.1136/gutjnl-2014-306768 · 13.32 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Unconventional myosin VIIA (Myo7a) has been known to associate with hereditary deafness. Here we present a novel function of Myo7a by identifying that Myo7a directly interacts with integrin β5 subunit and regulates cell adhesion and motility in an integrin-dependent manner. We found that Myo7a bound to the cytoplasmic tail of integrin β5. Further, we pinpointed an integrin-binding domain at F3 of the first FERM domain and F1 of the second FERM domain. Functionally, Myo7a-induced cell adhesion and migration were mediated by integrin αvβ5. These findings indicated that Myo7a interacts with integrin β5 and selectively promotes integrin αvβ5-mediated cell migration.
    FEBS Letters 07/2014; 588(17). DOI:10.1016/j.febslet.2014.06.049 · 3.34 Impact Factor