Article

Aggregation and retention of human urokinase type plasminogen activator in the yeast endoplasmic reticulum.

Institute of Experimental Cardiology, Cardiology Research Center, 3rd Cherepkovskaya Str, 15A, Moscow, 121552, Russia.
BMC Molecular Biology (Impact Factor: 2.8). 11/2002; 3:15. DOI: 10.1186/1471-2199-3-15
Source: PubMed

ABSTRACT Secretion of recombinant proteins in yeast can be affected by their improper folding in the endoplasmic reticulum and subsequent elimination of the misfolded molecules via the endoplasmic reticulum associated protein degradation pathway. Recombinant proteins can also be degraded by the vacuolar protease complex. Human urokinase type plasminogen activator (uPA) is poorly secreted by yeast but the mechanisms interfering with its secretion are largely unknown.
We show that in Hansenula polymorpha overexpression worsens uPA secretion and stimulates its intracellular aggregation. The absence of the Golgi modifications in accumulated uPA suggests that aggregation occurs within the endoplasmic reticulum. Deletion analysis has shown that the N-terminal domains were responsible for poor uPA secretion and propensity to aggregate. Mutation abolishing N-glycosylation decreased the efficiency of uPA secretion and increased its aggregation degree. Retention of uPA in the endoplasmic reticulum stimulates its aggregation.
The data obtained demonstrate that defect of uPA secretion in yeast is related to its retention in the endoplasmic reticulum. Accumulation of uPA within the endoplasmic reticulum disturbs its proper folding and leads to formation of high molecular weight aggregates.

0 Bookmarks
 · 
103 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Bovine follicle-stimulating hormone (bFSH) is a pituitary gonadotropin composed of two non-covalently associated polypeptide subunits, which must be glycosylated, folded, and assembled as a heterodimer to be biologically active. Low-level expression of the recombinant bFSH is the factor that limits its usefulness as a superovulation treatment for cows. To increase the production of recombinant bFSH, human protein disulfide isomerase (hPDI) was expressed simultaneously in engineered Pichia strains. The secretion characteristics of bFSH with or without hPDI were examined. The co-expression of bFSH and hPDI is increased to 1.56 mg/l of heterodimer in the culture medium, which is 6-fold higher when compared with the control strain carrying the bFSH gene only. These results may be generally applicable to increase the expression of other glycoprotein hormones in yeast.
    Protein Expression and Purification 09/2007; 54(2):234-9. · 1.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In yeast, functions of the endoplasmic reticulum (ER) depend on the Golgi apparatus Ca2+ pool, which is replenished by the medial-Golgi ion pump Pmr1p. Here, to dissect the role of the Golgi Ca2+ pool in protein folding and elimination of unfolded proteins in the ER, the manifestations of the pmr1 mutation in yeast Hansenula polymorpha were studied. The PMR1 gene was disrupted in a H. polymorpha diploid strain. Haploid segregants of this diploid bearing the disruption allele were viable, though they showed a severe growth defect on synthetic medium and rapidly died during storage at low temperature. Disruption of H. polymorpha PMR1 led to defects of the Golgi-hosted protein glycosylation and vacuolar protein sorting. This mutation increased the survival rate of H. polymorpha cells upon treatment with the proapoptotic drug amiodarone. Unlike Saccharomyces cerevisiae, the H. polymorpha pmr1 mutant was not hypersensitive to chemicals that induce the accumulation of unfolded proteins in the ER, indicating that the elimination of unfolded proteins from the ER was not essentially affected. At the same time, the pmr1 mutation improved the secretion of human urokinase and decreased its intracellular aggregation, indicating an influence of the mutation on the protein folding in the ER.
    FEMS Yeast Research 11/2007; 7(7):1145-52. · 2.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The urokinase-type plasminogen activator receptor (uPAR) has been implicated in tumor growth and metastasis. The crystal structure of uPAR revealed that the external surface is largely free to interact with a number of proteins. Additionally, due to absence of an intracellular cytoplasmic protein domain, many of the biological functions of uPAR necessitate interactions with other proteins. Here, we used yeast two-hybrid screening of breast cancer cDNA library to identify hSpry1 and HAX1 proteins as putative candidate proteins that interact with uPAR bait constructs. Interaction between these two candidates and uPAR was confirmed by GST-pull down, co-immunoprecipitation assays and confocal microscopy. These novel interactions that have been identified may also provide further evidence that uPAR can interact with a number of other proteins which may influence a range of biological functions.
    Biochemical and Biophysical Research Communications 09/2010; 399(4):738-43. · 2.41 Impact Factor

Full-text

View
1 Download
Available from