Article

IL-12 enhances the natural killer cell cytokine response to Ab-coated tumor cells.

Department of Molecular Virology, Immunology, and Medical Genetics, The Arthur G. James Comprehensive Cancer Center, The Ohio State University College of Medicine, Columbus, Ohio 43210, USA.
Journal of Clinical Investigation (Impact Factor: 13.77). 11/2002; 110(7):983-92. DOI: 10.1172/JCI15950
Source: PubMed

ABSTRACT The anti-tumor activity of recombinant mAb's directed against tumor cell growth receptors has generally been considered to result from direct antiproliferative effects, the induction of apoptosis, or possibly Ab-dependent cellular cytotoxicity mediated against tumor targets. However, it remains unclear to what degree these mechanisms actually aid in the clearance of Ab-coated tumor cells in vivo. We show here that NK cells secrete a distinct profile of potent immunostimulatory cytokines in response to dual stimulation with Ab-coated tumor cells and IL-12. This response could not be duplicated by costimulation with other ILs and was significantly enhanced in the presence of monocytes. Cytokine production was dependent upon synergistic signals mediated by the activating receptor for the Fc portion of IgG (FcgammaRIII) and the IL-12 receptor expressed on NK cells. Coadministration of Ab-coated tumor cells and IL-12 to BALB/c mice resulted in enhanced circulating levels of NK cell-derived cytokines with the capacity to augment anti-tumor immunity. These findings suggest that, in addition to mediating cellular cytotoxicity and apoptosis, the anti-tumor activity of mAb's might also result from activation of a potent cytokine secretion program within immune effectors capable of recognizing mAb-coated targets.

0 Bookmarks
 · 
106 Views
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The flower buds of Daphne genkwa Sieb. et Zucc. have been used as a traditional Chinese medicine although their functional mechanisms have not been discovered yet. We have studied the potential effects of the plant extracts on natural killer (NK) cell activation, and isolated an active fraction. Genkwadaphnin (GD-1) displayed a potent efficacy to induce IFN-γ transcription in NK cells with concentration- and time-dependent manners. GD-1 treatment triggered the phosphorylation of PKD1, a member of PKC family, MEK and ERK, resulting in IKK activation to induce IκB degradation, and the nuclear localization of p65, an NF-κB subunit, which regulates IFN-γ transcription. GD-1 effect on IFN-γ production was blocked by the addition of Rottlerin, a PKC inhibitor, CID 755673, a PKD inhibitor, or Bay11-7082, an IKKα inhibitor. The nuclear localization of p65 was also inhibited by the kinase inhibitors. Secreted IFN-γ activates STAT1 phosphorylation as autocrine-loops to sustain its secretion. GD-1 induced the phosphorylation of STAT1 probably through the increase of IFN-γ. STAT1 inhibitor also abrogated the sustained IFN-γ secretion. These results suggest that GD-1 is involved in the activation of PKD1 and/or ERK pathway, which activate NK-κB triggering IFN-γ production. As positive feedback loops, secreted IFN-γ activates STAT1 and elongates its production in NK-92 cells.
    PLoS ONE 12/2014; 9(12):e115146. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Natural killer (NK) cells are innate lymphoid cells important for host defense against pathogens and mediate antitumor immunity. Cytokine receptors transduce important signals that regulate proliferation, survival, activation status, and trigger effector functions. Here, we review the roles of major cytokines that regulate human NK cell development, survival, and function, including IL-2, IL-12, IL-15, IL-18, and IL-21, and their translation to the clinic as immunotherapy agents. We highlight a recent development in NK cell biology, the identification of innate NK cell memory, and focus on cytokine-induced memory-like (CIML) NK cells that result from a brief, combined activation with IL-12, IL-15, and IL-18. This activation results in long lived NK cells that exhibit enhanced functionality when they encounter a secondary stimulation and provides a new approach to enable NK cells for enhanced responsiveness to infection and cancer. An improved understanding of the cellular and molecular aspects of cytokine-cytokine receptor signals has led to a resurgence of interest in the clinical use of cytokines that sustain and/or activate NK cell antitumor potential. In the future, such strategies will be combined with negative regulatory signal blockade and enhanced recognition to comprehensively enhance NK cells for immunotherapy.
    Scientifica. 06/2014;

Preview

Download
0 Downloads
Available from