Article

IL-12 enhances the natural killer cell cytokine response to Ab-coated tumor cells.

Department of Molecular Virology, Immunology, and Medical Genetics, The Arthur G. James Comprehensive Cancer Center, The Ohio State University College of Medicine, Columbus, Ohio 43210, USA.
Journal of Clinical Investigation (Impact Factor: 12.81). 11/2002; 110(7):983-92. DOI: 10.1172/JCI15950
Source: PubMed

ABSTRACT The anti-tumor activity of recombinant mAb's directed against tumor cell growth receptors has generally been considered to result from direct antiproliferative effects, the induction of apoptosis, or possibly Ab-dependent cellular cytotoxicity mediated against tumor targets. However, it remains unclear to what degree these mechanisms actually aid in the clearance of Ab-coated tumor cells in vivo. We show here that NK cells secrete a distinct profile of potent immunostimulatory cytokines in response to dual stimulation with Ab-coated tumor cells and IL-12. This response could not be duplicated by costimulation with other ILs and was significantly enhanced in the presence of monocytes. Cytokine production was dependent upon synergistic signals mediated by the activating receptor for the Fc portion of IgG (FcgammaRIII) and the IL-12 receptor expressed on NK cells. Coadministration of Ab-coated tumor cells and IL-12 to BALB/c mice resulted in enhanced circulating levels of NK cell-derived cytokines with the capacity to augment anti-tumor immunity. These findings suggest that, in addition to mediating cellular cytotoxicity and apoptosis, the anti-tumor activity of mAb's might also result from activation of a potent cytokine secretion program within immune effectors capable of recognizing mAb-coated targets.

0 Bookmarks
 · 
82 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Natural killer (NK) cells recognize deranged cells that display stress receptors or loss of major histocompatibility complex (MHC) class I. During development, NK cells become “licensed” only after they encounter cognate human leukocyte antigen (HLA) class I, leading to the acquisition of effector function. NK cells can be exploited for cancer therapy in several ways. These include targeting with monoclonal antibodies alone or combined with ex vivo and in vivo NK cell activation to facilitate adoptive immunotherapy using donor-derived NK cell products to induce graft-vs-tumor effects. In the adoptive transfer setting, persistence and in vivo expansion requires lymphodepleting chemotherapy to prevent rejection and provide homeostatic cytokines (such as IL-15) that activate NK cells. IL-15 has the advantage of avoiding regulatory T-cell expansion. Clinical applications are currently being tested. To enhance in vivo expansion, IL-2 has been used at low doses. However, low dose administration also leads to the stimulation of regulatory T cells. Monoclonal antibodies and bispecific killer engagers (BiKEs) may enhance specificity by targeting CD16 on NK cells to tumor antigens. Inhibition of CD16 shedding may also promote enhanced cytotoxicity. Future strategies include exploiting favorable donor immunogenetics or ex vivo expansion of NK cells from blood, progenitors, or pluripotent cells. Comparative clinical trials are needed to test these approaches.
    Seminars in Immunology 01/2014; · 5.93 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Natural killer (NK) cells are innate lymphoid cells important for host defense against pathogens and mediate antitumor immunity. Cytokine receptors transduce important signals that regulate proliferation, survival, activation status, and trigger effector functions. Here, we review the roles of major cytokines that regulate human NK cell development, survival, and function, including IL-2, IL-12, IL-15, IL-18, and IL-21, and their translation to the clinic as immunotherapy agents. We highlight a recent development in NK cell biology, the identification of innate NK cell memory, and focus on cytokine-induced memory-like (CIML) NK cells that result from a brief, combined activation with IL-12, IL-15, and IL-18. This activation results in long lived NK cells that exhibit enhanced functionality when they encounter a secondary stimulation and provides a new approach to enable NK cells for enhanced responsiveness to infection and cancer. An improved understanding of the cellular and molecular aspects of cytokine-cytokine receptor signals has led to a resurgence of interest in the clinical use of cytokines that sustain and/or activate NK cell antitumor potential. In the future, such strategies will be combined with negative regulatory signal blockade and enhanced recognition to comprehensively enhance NK cells for immunotherapy.
    Scientifica. 06/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Antibody-dependent cellular cytotoxicity (ADCC) mediated by natural killer (NK) cells is a major mechanism of tumor therapy with antibodies. NK cells not only manifest cytotoxicity but also secrete a variety of cytokines/chemokines that regulate immune responses. Using a retroviral vector, in this study we established a KHYG-1 cell line that stably expresses FcγRIIIA (CD16A). The KHYG-1/FcγRIIIA cells exerted potent antibody concentration-dependent ADCC, whereas parental KHYG-1 cells did not. In contrast, without antibody, the natural killer activity of KHYG-1/FcγRIIIA cells was less potent than that of parental KHYG-1 cells. During the course of ADCC, KHYG-1/FcγRIIIA cells secreted IFN-γ and MIP-1α dependent upon antibody concentration, but parental KHYG-1 cells did not. These results suggest that KHYG-1/FcγRIIIA cells would be useful in studies to elucidate the function of NK cells and the mechanism of ADCC.
    Immunology letters. 05/2014;

Full-text

View
0 Downloads
Available from