Detection of dermcidin-derived peptides in sweat by ProteinChip technology.

Section for Transplantation Immunology and Immunohaematology, University of Tuebingen, Waldhoernlestr. 22, 72072, Tuebingen, Germany.
Journal of Immunological Methods (Impact Factor: 2.23). 01/2003; 270(1):53-62. DOI: 10.1016/S0022-1759(02)00229-6
Source: PubMed

ABSTRACT Recently, a novel antimicrobial peptide DCD-1, derived from the Dermcidin (DCD) gene and secreted by sweat glands, has been described by Schittek et al. [Nat. Immunol. 2 (2001) 1133.]. Here we describe the application of the surface-enhanced laser desorption/ionisation (SELDI) technology for the detection of DCD-1 and other dermcidin-derived peptides directly from microlitre amounts of human sweat. The advantages of the technique are as follows: (a) it can be carried out with ease and rapidity; (b) multiple samples can be processed simultaneously; (c) prior purification is not required; and (d) only a limited sample volume is necessary for both protein profiling and semiquantitation. Profiling of human sweat from various donors revealed that in addition to DCD-1, other DCD-derived peptide species were also present in significant quantities. Four of five identified peptides were DCD-1 related, while the fifth corresponded to a portion of the DCD protein outside the DCD-1 core. This provides clues as to how the novel protein is processed to its active form, though further work remains to elucidate this fully. Thus, we have demonstrated the applicability of such technology to the detection of DCD-1 and for the protein profiling of sweat in general. Such studies could reveal valuable new biomarkers for diagnosis and treatment of skin and sweat gland disorders.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dermcidin (DCD), an antimicrobial peptide that is secreted by sweat glands, is reportedly a human homolog of mouse proteolysis-inducing factor. This study was conducted to investigate the effect of DCD on body fat mobilization. The expression level of DCD in the livers of Ad-DCD-injected mice was higher than in those of Ad-beta-galactosidase (Ad-beta-gal)-injected mice 7 days after injection. In addition, injection with the Ad-DCD virus led to decreased body weight and epididymal fat mass when compared with controls. The plasma triglyceride level was decreased, whereas the free fatty acid and glycerol levels were increased in the Ad-DCD-injected group. Epididymal adipose tissues obtained from Ad-DCD-injected mice consisted of smaller adipocytes than tissues obtained from Ad-beta-gal-injected mice. The gene expression profiles revealed an upregulation of hormone-sensitive lipase and adipose fatty acid-binding protein, both of which are involved in adipocyte lipolysis, in Ad-DCD-injected mice, and this lipolytic effect of DCD paralleled the increase of circulating tumor necrosis factor-alpha (TNF-alpha) level that was observed. The perilipin levels in adipose tissue were decreased in Ad-DCD-injected mice when compared with those of the control mice. Taken together, these results suggest that DCD-mediated body fat reduction might occur as a result of TNF-alpha-induced downregulation of perilipin in adipose tissue.
    Journal of Endocrinology 08/2008; 198(1):111-8. · 4.06 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We evaluated the performance of real-time RT-PCR and ELISA assays for detection of dermcidin (DCD) in sweat and body-fluid stains. DCD, a small antibiotic peptide secreted into human sweat, was detected by real-time RT-PCR in 7-day-old stains containing as small as 10 microL of sweat, and the assay showed high specificity when testing 7-day-old stains containing 30 microL of other body-fluid. ELISA using anti-human dermcidin mouse monoclonal antibody detected DCD sweat diluted up to approximately 10,000-fold and could specifically detect DCD in 10 microL of body-fluid stains. The performance of the two assays was tested during winter on samples that simulated forensic case samples: an undershirt and a sock worn for 20 h, a handkerchief used to wipe the brow several times within 12h, a cap and a cotton glove worn for 4h, and a white robe worn at intervals for 2 years. The result showed that the former assay detected DCD in all sites of the undershirt examined (armpit, back, and breast), and the latter gave a relatively high OD value in the armpit among the three sites. For the socks, although the latter assay gave very high OD values in both the center and toe of the foot sole, the former could not detect DCD in both of them. These results indicate that highly damp conditions, such as inside a shoe, might promote the degradation of mRNA in samples such as socks. In the other case samples, sweat was adequately detected by both assays. This study is the first demonstration of the use of real-time RT-PCR to sensitively identify sweat among body-fluid stains, and it confirmed that dermcidin was an excellent marker for sweat identification. In addition, the usefulness of ELISA was also verified. Positive sweat identification using these assays is expected to assist forensic practice.
    Forensic science international 11/2009; 194(1-3):80-4. · 2.10 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dermcidin is a human antibiotic peptide that is secreted by the sweat glands and has no homology to other known antimicrobial peptides. As an initial step toward understanding dermcidin's mode of action at bacterial membranes, we used homonuclear and heteronuclear NMR to determine the conformation of the peptide in 50% trifluoroethanol solution. We found that dermcidin adopts a flexible amphipathic alpha-helical structure with a helix-hinge-helix motif, which is a common molecular fold among antimicrobial peptides. Spin-down assays of dermcidin and several related peptides revealed that the affinity with which dermcidin binds to bacterial-mimetic membranes is primarily dependent on its amphipathic alpha-helical structure and its length (>30 residues); its negative net charge and acidic pI have little effect on binding. These findings suggest that the mode of action of dermcidin is similar to that of other membrane-targeting antimicrobial peptides, though the details of its antimicrobial action remain to be determined.
    BMB reports 05/2010; 43(5):362-8. · 1.63 Impact Factor

Full-text (2 Sources)

Available from
Jun 2, 2014