Article

Genetic structure and distribution of four pathogenicity islands (PAI I(536) to PAI IV(536)) of uropathogenic Escherichia coli strain 536.

Institut für Molekulare Infektionsbiologie, Universität Würzburg, D-97070 Würzburg, Germany.
Infection and Immunity (Impact Factor: 4.16). 12/2002; 70(11):6365-72. DOI: 10.1128/IAI.70.11.6365-6372.2002
Source: PubMed

ABSTRACT For the uropathogenic Escherichia coli strain 536 (O6:K15:H31), the DNA sequences of three pathogenicity islands (PAIs) (PAI I(536) to PAI III(536)) and their flanking regions (about 270 kb) were determined to further characterize the virulence potential of this strain. PAI I(536) to PAI III(536) exhibit features typical of PAIs, such as (i) association with tRNA-encoding genes; (ii) G+C content differing from that of the host genome; (iii) flanking repeat structures; (iv) a mosaic-like structure comprising a multitude of functional, truncated, and nonfunctional putative open reading frames (ORFs) with known or unknown functions; and (v) the presence of many fragments of mobile genetic elements. PAI I(536) to PAI III(536) range between 68 and 102 kb in size. Although these islands contain several ORFs and known virulence determinants described for PAIs of other extraintestinal pathogenic E. coli (ExPEC) isolates, they also consist of as-yet-unidentified ORFs encoding putative virulence factors. The genetic structure of PAI IV(536), which represents the core element of the so-called high-pathogenicity island encoding a siderophore system initially identified in pathogenic yersiniae, was further characterized by sample sequencing. For the first time, multiple PAI sequences (PAI I(536) to PAI IV(536)) in uropathogenic E. coli were studied and their presence in several wild-type E. coli isolates was extensively investigated. The results obtained suggest that these PAIs or at least large fragments thereof are detectable in other pathogenic E. coli isolates. These results support our view that the acquisition of large DNA regions, such as PAIs, by horizontal gene transfer is an important factor for the evolution of bacterial pathogens.

0 Bookmarks
 · 
149 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Escherichia coli ST131 is now recognised as a leading contributor to urinary tract and bloodstream infections in both community and clinical settings. Here we present the complete, annotated genome of E. coli EC958, which was isolated from the urine of a patient presenting with a urinary tract infection in the Northwest region of England and represents the most well characterised ST131 strain. Sequencing was carried out using the Pacific Biosciences platform, which provided sufficient depth and read-length to produce a complete genome without the need for other technologies. The discovery of spurious contigs within the assembly that correspond to site-specific inversions in the tail fibre regions of prophages demonstrates the potential for this technology to reveal dynamic evolutionary mechanisms. E. coli EC958 belongs to the major subgroup of ST131 strains that produce the CTX-M-15 extended spectrum β-lactamase, are fluoroquinolone resistant and encode the fimH30 type 1 fimbrial adhesin. This subgroup includes the Indian strain NA114 and the North American strain JJ1886. A comparison of the genomes of EC958, JJ1886 and NA114 revealed that differences in the arrangement of genomic islands, prophages and other repetitive elements in the NA114 genome are not biologically relevant and are due to misassembly. The availability of a high quality uropathogenic E. coli ST131 genome provides a reference for understanding this multidrug resistant pathogen and will facilitate novel functional, comparative and clinical studies of the E. coli ST131 clonal lineage.
    PLoS ONE 08/2014; 9(8):e104400. · 3.53 Impact Factor
  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: The pathogenic characteristics of Klebsiella pneumoniae could pose security risks for industrial applications. In this study, the existence and distribution of 2457 known virulence genes (VFs) in 9 strains of K. pneumoniae were systematically analyzed by high-throughput in silico methods. We found different numbers and types of VFs in 9K. pneumoniae strains using database sequences. Some VFs in the database were highly homologous with the corresponding genes in K. pneumoniae genomes. Four large fragments with contiguous potential virulence genes named VF1, VF2, VF3 and VF4 were identified. VF1 and VF2 were found in all 9 sequenced strains and the 1,3-propanediol-producing strain KG1. When the VF2 fragment was knocked out in KG1, cell growth and 1,3-propanediol production in the mutant were nearly the same as in KG1. Consequently the resulting information by in silico methods is useful for identifying potential virulence genes of K. pneumoniae used for 1,3-propanediol production.
    Journal of Biotechnology 08/2014; · 2.88 Impact Factor

Full-text (2 Sources)

Download
22 Downloads
Available from
May 20, 2014