Fluid shear stress attenuates hydrogen peroxide-induced c-Jun NH2-terminal kinase activation via a glutathione reductase-mediated mechanism.

Center for Cardiovascular Research, Cardiology Unit, Department of Medicine, University of Rochester, Rochester, NY 14642, USA.
Circulation Research (Impact Factor: 11.09). 11/2002; 91(8):712-8.
Source: PubMed

ABSTRACT c-Jun NH2-terminal kinase (JNK) is activated by a number of cellular stimuli including reactive oxygen species (ROS). Previous studies have demonstrated that fluid shear stress (flow) inhibits cytokine-induced JNK activation in endothelial cells (ECs). In the present study, we show JNK activation by ROS in ECs and hypothesized that flow inhibits ROS-induced JNK activation in ECs via modulation of cellular protection systems against ROS. JNK was activated by 300 micro mol/L hydrogen peroxide (H2O2) in bovine lung microvascular ECs (BLMVECs) with a peak at 60 minutes after stimulation (6.3+/-1.2-fold increase). Preexposure of BLMVECs to physiological steady laminar flow (shear stress=12 dyne/cm2) for 10 minutes significantly decreased H2O2-induced JNK activation. Thioredoxin and glutathione are cellular antioxidants that protect cells against ROS. Flow induced a significant increase in the ratio of reduced glutathione to oxidized glutathione consistent with a 1.6-fold increase in glutathione reductase (GR) activity. Preincubation of BLMVECs with the GR inhibitor, 1,3 bis-(2 chloroethyl)-1-nitrosourea, abolished the inhibitory effect of flow. In contrast, preincubation of BLMVECs with azelaic acid, a specific inhibitor for thioredoxin reductase, did not alter the effect of flow on H2O2-induced JNK activation. Overexpression of GR mimicked the effect of flow to inhibit JNK activation. These results suggest that flow activates GR, an important regulator of the intracellular redox state of glutathione, and exerts a protective mechanism against oxidative stress in endothelial cells.

  • Source
    Advances in the Etiology, Pathogenesis and Pathology of Vasculitis, 10/2011; , ISBN: 978-953-307-651-5
  • [Show abstract] [Hide abstract]
    ABSTRACT: Two Rokumi-jio-gan-containing prescriptions (Hachimi-jio-gan and Bakumi-jio-gan) were selected to examine their actions in nephrectomized rats. Each prescription was given orally to rats for 10 weeks after the excision of five-sixths of their kidney volumes, and its effect was compared with non-nephrectomized and normal rats. Rats given Hachimi-jio-gan and Bakumi-jio-gan showed an improvement of renal functional parameters such as serum urea nitrogen, creatinine, creatinine clearance, and urinary protein. The nephrectomized rats exhibited the up-regulation of nicotinamide adenine dinucleotide phosphate oxidase subunits, c-Jun N-terminal kinase (JNK), phosphor-JNK, c-Jun, transforming growth factor-β(1), nuclear factor-kappa B, cyclooxygenase-2, inducible nitric oxide synthase, monocyte chemotactic protein-1, intracellular adhesion molecule-1, Bax, cytochrome c, and caspase-3, and down-regulation of NF-E2-related factor 2, heme oxygenase-1, and survivin; however, Bakumi-jio-gan administration acts as a regulator in inflammatory reactions caused by oxidative stress in renal failure. Moreover, the JNK pathway and apoptosis-related protein expressions, Bax, caspase-3, and survivin, were ameliorated to the normal levels by Hachimi-jio-gan administration. The development of renal lesions, glomerular sclerosis, tubulointerstitial damage, and arteriolar sclerotic lesions, estimated by histopathological evaluation and scoring, was strong in the groups administered Hachimi-jio-gan rather than Bakumi-jio-gan. This study suggests that Rokumi-jio-gan-containing prescriptions play a protective role in the progression of renal failure.
    Evidence-based Complementary and Alternative Medicine 11/2012; 2012:587902. DOI:10.1155/2012/587902 · 2.18 Impact Factor
    This article is viewable in ResearchGate's enriched format
  • [Show abstract] [Hide abstract]
    ABSTRACT: We investigated early cellular responses induced by infection with Leishmania major in macrophages from resistant C57/BL6 mice. Infection increased production of reactive oxygen species by resident, but not inflammatory peritoneal macrophages. In addition, infection increased activation of stress-activated protein kinases/c-Jun N-terminal kinases (SAPK/JNK) in resident, but not in inflammatory peritoneal macrophages. Infection also increased expression of membrane and soluble FasL, but infected macrophages remained viable after 48 h. Infection increased secretion of cytokines/chemokines TNF-α, IL-6, TIMP-1, IL-1RA, G-CSF, TREM, KC, MIP-1α, MIP-1β, MCP-1, and MIP-2 in resident macrophages. Addition of antioxidants deferoxamine and N-acetylcysteine reduced ROS generation and JNK activation. Addition of antioxidants or JNK inhibitor SP600125 reduced secretion of KC. Furthermore, treatment with antioxidants or JNK inhibitor also reduced intracellular parasite replication. These results indicated that infection triggers a rapid cellular stress response in resident macrophages which induces proinflammatory signals, but is also involved in parasite survival and replication in host macrophages.
    PLoS ONE 01/2014; 9(1):e85715. DOI:10.1371/journal.pone.0085715 · 3.53 Impact Factor
    This article is viewable in ResearchGate's enriched format