Article

Lentiviral vector transduction of NOD/SCID repopulating cells results in multiple vector integrations per transduced cell: risk of insertional mutagenesis

Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Baden-Württemberg, Germany
Blood (Impact Factor: 10.43). 03/2003; 101(4):1284-9. DOI: 10.1182/blood-2002-07-2238
Source: PubMed

ABSTRACT Efficient vector transduction of hematopoietic stem cells is a requirement for successful gene therapy of hematologic disorders. We asked whether human umbilical cord blood CD34(+)CD38(lo) nonobese diabetic/severe combined immunodeficiency (NOD/SCID) repopulating cells (SRCs) could be efficiently transduced using lentiviral vectors, with a particular focus on the average number of vector copies integrating into these primitive progenitor cells. Mouse bone marrow was analyzed by fluorescence-activated cell-sorter scanner and by semiquantitative polymerase chain reaction (PCR) to determine the transduction efficiency into SRCs. Lentiviral vector transduction resulted in an average of 22% (range, 3%-90%) of the human cells expressing green fluorescent protein (GFP), however, multiple vector copies were present in human hematopoietic cells, with an average of 5.6 +/- 3.3 (n = 12) copies per transduced cell. To confirm the ability of lentiviral vectors to integrate multiple vector copies into SRCs, linear amplification mediated (LAM)-PCR was used to analyze the integration site profile of a selected mouse showing low-level engraftment and virtually all human cells expressing GFP. Individually picked granulocyte macrophage colony-forming unit colonies derived from the bone marrow of this mouse were analyzed and shown to have the same 5 vector integrants within each colony. Interestingly, one integration site of the 5 that were sequenced in this mouse was located in a known tumor-suppressor gene, BRCA1. Therefore, these findings demonstrate the ability of lentiviral vectors to transduce multiple copies into a subset of NOD/SCID repopulating cells. While this is efficient in terms of transduction and transgene expression, it may increase the risk of insertional mutagenesis.

Download full-text

Full-text

Available from: Johan Flygare, Mar 08, 2014
0 Followers
 · 
82 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Non-integrating gene delivery vectors have an improved safety profile compared to integrating vectors, but transgene retention is problematic as non-replicating episomes are progressively and rapidly diluted out through cell division. We have developed an integration-deficient lentiviral vector (IDLV) system generating mitotically stable episomes capable of long-term transgene expression. We found that a transient cell cycle arrest at the time of transduction with IDLVs resulted in 13-45% of CHO cells expressing the transgene for over 100 cell generations in the absence of selection. The use of a Scaffold/Matrix Attachment Region (S/MAR) did not result in improved episomal retention in this system, and episomes did not form following transduction with AAV or minicircle vectors under the same conditions. Investigations into the episomal status of the vector genome using (i) linear amplification–mediated PCR (LAM-PCR) followed by deep sequencing of vector-genome junctions, (ii) Southern blotting and (iii) fluorescent in situ hybridization (FISH) strongly suggest that the vector is not integrated in the vast majority of cells. In conclusion, we have developed an IDLV procedure generating mitotically stable episomes capable of long-term transgene expression. The application of this approach to stem cell populations could significantly improve the safety profile of a range of stem and progenitor cell gene therapies.
    Human Gene Therapy 05/2014; 25(5):428-442. DOI:10.1089/hum.2013.172 · 3.62 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Protein factors involved in lipofection pathways remain elusive. Using avidin-biotin affinity chromatography and mass finger printing analysis technique, herein we report the identification of a 70 kDa size protein (bovine serum albumin precursor, BSAP) which binds strongly with lipoplexes and may play role in lipofection pathway. Using multiple cultured animal cells and three structurally different cationic transfection lipids, we show that the efficiencies of liposomal transfection vectors get significantly enhanced (by ~2.5- to 5.0-fold) in cells pre-transfected with lipoplexes of reporter plasmid construct encoding BSAP. Findings in the cellular uptake experiments in A549 cells cultured in DMEM supplemented with 10 percent (w/w) BODIPY-labelled BSAP are consistent with the supposition that BSAP enters cell cytoplasm from the cell culture medium (DMEM supplemented with 10 percent FBS) used in lipofection. Cellular uptake studies by confocal microscopy using BODIPY-labelled BSAP and FITC-labelled plasmid DNA revealed co-localization of plasmid DNA and BSAP within the cell cytoplasm and nucleus. In summary, the present findings hint at the possible involvement of BSAP in lipofection pathway.
    Journal of Biosciences 03/2014; 39(1):43-52. DOI:10.1007/s12038-014-9415-2 · 1.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although the development of gene delivery systems via non-viral-mediated methods is advancing rapidly, it remains a challenge to deliver plasmids into hard-to-transfect cells, such as lymphoma/leukemia cells. To develop an efficient transfection method, we formulated a simple nanocomplex by incorporating poly β-amino ester (PBAE) polymers with plasmid DNAs containing a GFP reporter gene. The formed PBAE-plasmid nanocomplexes are approximately 200nm in diameter and stable under physiological conditions, but become rapidly biodegradable when pH decreases <7.0. Cultured lymphoma/leukemia cells were used for transfection assays and resultant gene delivery rates were determined by quantifying GFP expression. Exposure of cells to the nanocomplexes composed of fractioned PBAE (>7kDa) resulted in GFP expression in 3% of cells, similar to that mediated by the standard Lipofectamine method. However, with polybrene pre-treatment, the nanocomplex could achieve GFP expression in up to 32% of lymphoma/leukemia cells, an 8-fold increase over that mediated by Lipofectamine. These findings demonstrated a simple, efficient method for in vitro gene delivery into hard-to-transfect cells. The nanocomplexes are biodegradable and have minimal cytotoxicity, suggesting the potential use for in vivo gene delivery.
    Journal of Controlled Release 01/2012; 159(1):104-10. DOI:10.1016/j.jconrel.2012.01.007 · 7.26 Impact Factor