Novel two-component regulatory system involved in biofilm formation and acid resistance in Streptococcus mutans.

Dental Research Institute, University of Toronto, Ontario, Canada M5G 1G6.
Journal of Bacteriology (Impact Factor: 2.69). 12/2002; 184(22):6333-42. DOI: 10.1128/JB.184.22.6333-6342.2002
Source: PubMed

ABSTRACT The abilities of Streptococcus mutans to form biofilms and to survive acidic pH are regarded as two important virulence determinants in the pathogenesis of dental caries. Environmental stimuli are thought to regulate the expression of several genes associated with virulence factors through the activity of two-component signal transduction systems. Yet, little is known of the involvement of these systems in the physiology and pathogenicity of S. mutans. In this study, we describe a two-component regulatory system and its involvement in biofilm formation and acid resistance in S. mutans. By searching the S. mutans genome database with tblastn with the HK03 and RR03 protein sequences from S. pneumoniae as queries, we identified two genes, designated hk11 and rr11, that encode a putative histidine kinase and its cognate response regulator. To gain insight into their function, a PCR-mediated allelic-exchange mutagenesis strategy was used to create the hk11 (Em(r)) and rr11 (Em(r)) deletion mutants from S. mutans wild-type NG8 named SMHK11 and SMRR11, respectively. The mutants were examined for their growth rates, genetic competence, ability to form biofilms, and resistance to low-pH challenge. The results showed that deletion of hk11 or rr11 resulted in defects in biofilm formation and resistance to acidic pH. Both mutants formed biofilms with reduced biomass (50 to 70% of the density of the parent strain). Scanning electron microscopy revealed that the biofilms formed by the mutants had sponge-like architecture with what appeared to be large gaps that resembled water channel-like structures. The mutant biofilms were composed of longer chains of cells than those of the parent biofilm. Deletion of hk11 also resulted in greatly diminished resistance to low pH, although we did not observe the same effect when rr11 was deleted. Genetic competence was not affected in either mutant. The results suggested that the gene product of hk11 in S. mutans might act as a pH sensor that could cross talk with one or more response regulators. We conclude that the two-component signal transduction system encoded by hk11 and rr11 represents a new regulatory system involved in biofilm formation and acid resistance in S. mutans.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Streptococcus mutans, a major acidogenic component of the dental plaque biofilm, has a key role in caries etiology. Previously, we demonstrated that the VicRK two-component signal transduction system modulates biofilm formation, oxidative stress and acid tolerance responses in S. mutans. Using in vitro phosphorylation assays, here we demonstrate for the first time, that in addition to activating its cognate response regulator protein, the sensor kinase, VicK can transphosphorylate a non-cognate stress regulatory response regulator, GcrR, in the presence of manganese. Manganese is an important micronutrient that has been previously correlated with caries incidence, and which serves as an effector of SloR-mediated metalloregulation in S. mutans. Our findings supporting regulatory effects of manganese on the VicRK, GcrR and SloR, and the cross-regulatory networks formed by these components are more complex than previously appreciated. Using DNaseI footprinting we observed overlapping DNA binding specificities for VicR and GcrR in native promoters, consistent with these proteins being part of the same transcriptional regulon. Our results also support a role for SloR as a positive regulator of the vicRK two component signaling system, since its transcription was drastically reduced in a SloR-deficient mutant. These findings demonstrate the regulatory complexities observed with the S. mutans manganese-dependent response, which involves cross-talk between non-cognate signal transduction systems (VicRK and GcrR) to modulate stress response pathways.
    PLoS ONE 12/2014; 9(12):e115975. DOI:10.1371/journal.pone.0115975 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mutans streptococci (MS) are one of the major microbiological determinants of dental caries. The objectives of this study are to identify distinct MS and non-MS streptococci strains that are located at carious sites and non-carious enamel surfaces in children with severe early childhood caries (S-ECC), and assess if cariogenic MS and non-cariogenic streptococci might independently exist as primary bacterial strains on distinct sites within the dentition of individual children. Dental plaque from children (N=20; aged 3-6) with S-ECC was collected from carious lesions (CLs), white spot lesions (WSLs) and non-carious enamel surfaces. Streptococcal isolates (N=10-20) from each site were subjected to polymerase chain reaction (PCR) to identify MS, and arbitrarily primed-PCR for assignment of genetic strains. Primary strains were identified as ≥50% of the total isolates surveyed at any site. In several cases, strains were characterized for acidurity using ATP-driven bioluminescence and subjected to PCR-determination of potential MS virulence products. Identification of non-MS was determined by 16S rRNA gene sequencing. Sixty-four independent MS or non-MS streptococcal strains were identified. All children contained 1-6 strains. In many patients (N=11), single primary MS strains were identified throughout the dentition. In other patients (N=4), primary MS strains were identified within CLs that were distinct from primary strains found on enamel. Streptococcus gordonii strains were identified as primary strains on enamel or WSLs in four children, and in general were less aciduric than MS strains. Many children with S-ECC contained only a single primary MS strain that was present in both carious and non-carious sites. In some cases, MS and non-cariogenic S. gordonii strains were found to independently exist as dominant strains at different locations within the dentition of individual children, and the aciduric potential of these strains may influence susceptibility in the development of CLs.
    Journal of Oral Microbiology 10/2014; 6. DOI:10.3402/jom.v6.25805
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Streptococcus mutans (S. mutans) is an inhabitant of the normal flora of human dental plaque, and is considered the major etiological agent of caries. S. mutans has the ability modulate its physiology in response to changing environmen-tal conditions. This review discusses the acid tolerance response pathway and quorum sensing systems that are two major con-duits by which S. mutans accomplishes these physiological modulations.


Available from
May 16, 2014