Article

Energy response of an imaging plate exposed to standard beta sources.

Department of Radiation Oncology, Vanderbilt University, The Vanderbilt Clinic, B-902, 1301 22nd Avenue South, Nashville, TN 37232-5671, USA.
Applied Radiation and Isotopes (Impact Factor: 1.18). 01/2003; 57(6):875-82. DOI: 10.1016/S0969-8043(02)00199-9
Source: PubMed

ABSTRACT Imaging plates (IPs) are a reusable media, which when exposed to ionizing radiation, store a latent image that can be read out with a red laser as photostimulated luminescence (PSL). They are widely used as a substitute for X-ray films for diagnostic studies. In diagnostic radiology this technology is known as computed radiography. In this work, the energy response of a commercial IP to beta-particle reference radiation fields used for calibrations at the National Institute of Standards and Technology was investigated. The absorbed dose in the active storage phosphor layer was calculated following the scaling procedure for depth dose for high Z materials with reference to water. It was found that the beta particles from Pm-147 and Kr-85 gave 68% and 24% higher PSL responses than that induced by Sr-90, respectively, which was caused by the different PSL detection efficiencies. In addition, normalized response curves of the IPs as a function of depth in polystyrene were measured and compared with the data measured using extrapolation chamber techniques. The difference between both sets of data resulted from the continuous energy change as the beta particle travels across the material, which leads to a different PSL response.

0 Bookmarks
 · 
77 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The BaFBrI:Eu2+ storage phosphor plate (SPP) is a reusable radiation image detector, widely used in diagnostic computed radiography, x-ray crystallography and radioactive tracer studies. When exposed to ionizing radiation, the SPP stores a latent image until it is scanned with a red reading laser which causes blue photostimulated luminescent (PSL) photons to be emitted. The mechanism of formation of the latent image is still poorly understood, especially for megavoltage photon beams. In order to gain insight into this mechanism and aid applications to high-energy beam dosimetry, the authors have directly determined the SPP generation efficiency, W, the energy required to produce one quantum of emitted PSL when it is irradiated by 60Co and 6 MV photon beams. This was done in four steps: 1. The SPP, in a water-equivalent plastic (WEP) phantom, was exposed to a 60Co or 6 MV beam, which had been calibrated to give a known absorbed dose to water in a water phantom at the position of the sensitive layer of the SPP. 2. Monte Carlo simulations were used to calculate the ratio of the dose to the sensitive layer in the WEP phantom to the dose to water at the same position in a water phantom. 3. A bleaching experiment was used to determine the number of photons emitted by a plate given a known dose. 4. The generation efficiency was calculated from the number of photons and the dose. This method is much more direct than previous calculations for kilovoltage x-ray beams based on quantum noise analysis. W was found, within experimental uncertainty, to be 190 eV for 60Co and 160 eV for 6 MV, independent of dose. The values for kilovoltage x-ray beams determined previously agree, within their large uncertainty, with these values for megavoltage beams.
    Medical Physics 02/2007; 34(1):103-11. · 2.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We measured the absolute response of image plate (Fuji BAS SR2040) for electrons at energies between 100 keV and 4 MeV using an electron spectrometer. The electron source was produced from a short pulse laser irradiated on solid density targets. This paper presents the calibration results of image plate photon stimulated luminescence per electron at this energy range. The Monte Carlo radiation transport code MCNPX results are also presented for three representative incident angles onto the image plates and corresponding electron energy depositions at these angles. These provide a complete set of tools that allows extraction of our absolute calibration to other spectrometer setting at this electron energy range.
    Review of Scientific Instruments 04/2008; · 1.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We utilized autoradiography to visualize radioactive contamination in the skeletal muscles of a pig raised within 20 km of the Fukushima Daiichi nuclear power plant following the nuclear accident. The autoradiogram of control muscle showed relatively homogenous exposure. In contrast, the autoradiogram of affected muscle showed a heterogeneous and sporadically dense imaging pattern. Photo luminescence densities of the affected and control muscles were 3.89 ± 0.67 and 2.13 ± 0.43 PSL/mm(2), respectively. This difference indicated that radioactive cesium was distributed in the skeletal muscle of the affected pig.
    Journal of Veterinary Medical Science 08/2012; · 0.88 Impact Factor

Full-text (2 Sources)

View
2 Downloads
Available from
Oct 21, 2014