Pathogenesis of infections due to coagulase-negative staphylococci.

Institute of Medical Microbiology, University of Münster Hospital and Clinics, Münster, Germany.
The Lancet Infectious Diseases (Impact Factor: 19.97). 12/2002; 2(11):677-85. DOI: 10.1016/S1473-3099(02)00438-3
Source: PubMed

ABSTRACT As a group, the coagulase-negative staphylococci (CoNS) are among the most frequently isolated bacteria in the clinical microbiology laboratory and are becoming increasingly important, especially as causes of hospital-acquired infections. These bacteria are normal inhabitants of human skin and mucous membranes and, therefore, one of the major challenges of daily diagnostic work is to distinguish clinically significant CoNS from contaminant strains. This overview addresses current knowledge of the pathogenesis of infections due to CoNS and particularly focuses on virulence factors of the species Staphylococcus epidermidis. S epidermidis has been identified as a major cause of nosocomial infections, especially in patients with predisposing factors such as indwelling or implanted foreign polymer bodies. Most important in the pathogenesis of foreign-body-associated infections is the ability of these bacteria to colonise the polymer surface by the formation of a thick, multilayered biofilm. Biofilm formation takes place in two phases. The first phase involves the attachment of the bacteria to polymer surfaces that may be either unmodified or coated with host extracellular matrix proteins. In the second phase, the bacteria proliferate and accumulate into multilayered cell clusters that are embedded in an extracellular material. The bacterial factors involved in both phases of biofilm formation are discussed in this review. In addition, the most important aspects of the pathogenic potential of S saprophyticus, S lugdunensis, and S schleiferi are described, although, compared with S epidermidis, much less is known in these species concerning their virulence factors.

1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Staphylococcus epidermidis (S. epidermidis) has emerged as one of the leading pathogens of biomaterial-related infections. Vascular adhesion protein-1 (VAP-1) is an inflammation inducible endothelial molecule controlling extravasation of leukocytes. Sialic acid-binding immunoglobulin-like lectin 9 (Siglec-9) is a leukocyte ligand of VAP-1. We hypothesized that 68Ga-labeled 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-conjugated Siglec-9 motif containing peptide (68Ga-DOTA-Siglec-9) could detect inflammatory response due to S. epidermidis peri-implant infection by positron emission tomography (PET). Methods: Thirty Sprague-Dawley rats were randomized into three groups. A sterile catheter was implanted into the medullary canal of the left tibia. In groups 1 and 2, the implantation was followed by peri-implant injection of S. epidermidis or Staphylococcus aureus (S. aureus) with adjunct injections of aqueous sodium morrhuate. In group 3, sterile saline was injected instead of bacteria and no aqueous sodium morrhuate was used. At 2 weeks after operation, 68Ga-DOTA-Siglec-9 PET coupled with computed tomography (CT) was performed with the measurement of the standardized uptake value (SUV). The presence of the implant-related infection was verified by microbiological analysis, imaging with fluorescence microscope, and histology. The in vivo PET results were verified by ex vivo measurements by gamma counter. Results: In group 3, the tibias with implanted sterile catheters showed an increased local uptake of 68Ga-DOTA-Siglec-9 compared with the intact contralateral bones (SUVratio +29.5%). 68Ga-DOTA-Siglec-9 PET detected inflammation induced by S. epidermidis and S. aureus catheter-related bone infections (SUVratio +58.1% and +41.7%, respectively). The tracer uptake was significantly higher in the S. epidermidis group than in group 3 without bacterial inoculation, but the difference between S. epidermidis and S. aureus groups was not statistically significant. The difference between the S. aureus group and group 3 was neither statistically significant. Conclusion: PET/CT imaging with novel 68Ga-DOTA-Siglec-9 tracer was able to detect inflammatory tissue response induced by catheter implantation and staphylococcal infections.
    EJNMMI Res. 08/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Staphylococcus epidermidis is the most frequently isolated species of the coagulase negative staphylococci from human stool. However, it is not clear how its presence in the gut affects the cellular structures and functions of this organ. In this study therefore, the pathogenicity of strains of S. epidermidis which were isolated from the stool samples of apparently healthy children was investigated in mice and rats.
    BMC Gastroenterology 07/2014; 14(1):126. · 2.11 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A majority of cochlear implant infections are caused by Staphylococcus aureus or Pseudomonas aeruginosa. Reported here is a pediatric patient with a cochlear implant infection caused by methicillin-resistant Staphylococcus lugdunensis, a coagulase-negative Staphylococcus that has only recently been determined to be clinically relevant (1988). Unlike other coagulase-negative Staphylococcus, it is more aggressive, carrying a greater potential for tissue destruction. In pediatrics, the organism is uncommon, poorly described, and generally pan-susceptible. Described herein is the presentation and management of this unusual organism in a pediatric setting.
    Infectious disease reports. 05/2014; 6(2):5406.