Article

ProNGF Induces p75-Mediated Death of Oligodendrocytes following Spinal Cord Injury

Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA.
Neuron (Impact Factor: 15.98). 11/2002; 36(3):375-86. DOI: 10.1016/S0896-6273(02)01005-X
Source: PubMed

ABSTRACT The neurotrophin receptor p75 is induced by various injuries to the nervous system, but its role after injury has remained unclear. Here, we report that p75 is required for the death of oligodendrocytes following spinal cord injury, and its action is mediated mainly by proNGF. Oligodendrocytes undergoing apoptosis expressed p75, and the absence of p75 resulted in a decrease in the number of apoptotic oligodendrocytes and increased survival of oligodendrocytes. ProNGF is likely responsible for activating p75 in vivo, since the proNGF from the injured spinal cord induced apoptosis among p75(+/+), but not among p75(-/-), oligodendrocytes in culture, and its action was blocked by proNGF-specific antibody. Together, these data suggest that the role of proNGF is to eliminate damaged cells by activating the apoptotic machinery of p75 after injury.

0 Followers
 · 
118 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The nerve growth factor precursor (pro-NGF) may function as a death-inducing ligand that mediates its apoptotic effects via p75NTR. Pro-NGF-induced apoptosis is postulated to be dependent upon membrane expression of the sortilin receptor, which interacts with p75NTR to promote a high-affinity binding site for pro-NGF. Here, we explore the expression of pro-NGF, sortilin and p75NTR in the mouse lumbar dorsal root ganglion (DRG) to understand the potential for this trimeric signaling complex to function in injury-induced neuronal death of DRG neurons. Our results reveal the expression of all 3 components within the DRG and that a subpopulation of neurons coexpresses sortilin and p75NTR. Following sciatic nerve transection, the expression of these proteins appears insensitive to injury; however, the majority of small p75NTR-sortilin coexpressing neurons are lost 25 days after sciatic nerve transection. These results propose pro-NGF-induced, p75NTR-sortilin-mediated neuronal death as a critical aspect of nerve injury-induced death in the DRG.
    Brain Research 01/2008; 1183:32-42. DOI:10.1016/j.brainres.2007.09.051 · 2.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Spinal cord injury (SCI) causes delayed secondary biochemical alterations that lead to tissue loss and associated neurological dysfunction. Up-regulation of cell cycle proteins occurs in both neurons and glia after SCI and may contribute to these changes. The present study examined the role of cell cycle activation on secondary injury after severe SCI in rat. SCI caused cell cycle protein up-regulation associated with neuronal and oligodendroglial apoptosis, glial scar formation and microglial activation. Treatment with the cell cycle inhibitor flavopiridol reduced cell cycle protein induction and significantly improved functional recovery versus vehicle-treated controls at 21 and 28 days post-injury. Treatment also significantly reduced lesion volume, as measured by MRI and histology, decreased astrocytic reactivity, attenuated neuronal and oligodendroglial apoptosis and reduced the production of factors associated with microglial activation. Thus, flavopiridol treatment improves outcome after SCI by inhibiting cell cycle pathways, resulting in beneficial multifactorial actions on neurons and glia.
    Brain 12/2007; 130(Pt 11):2977-92. DOI:10.1093/brain/awm179 · 10.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although oligodendrocytes undergo apoptosis after spinal cord injury, molecular mechanisms responsible for their death have been unknown. We report that oligodendrocyte apoptosis is regulated oppositely by c-Jun N-terminal kinase 3 (JNK3) and protein interacting with the mitotic kinase, never in mitosis A I (Pin1), the actions of which converge on myeloid cell leukemia sequence-1 (Mcl-1). Activated after injury, JNK3 induces cytochrome c release by facilitating the degradation of Mcl-1, the stability of which is maintained in part by Pin1. Pin1 binds Mcl-1 at its constitutively phosphorylated site, Thr163Pro, and stabilizes it by inhibiting ubiquitination. After injury JNK3 phosphorylates Mcl-1 at Ser121Pro, facilitating the dissociation of Pin1 from Mcl-1. JNK3 thus induces Mcl-1 degradation by counteracting the protective binding of Pin1. These results are confirmed by the opposing phenotypes observed between JNK3-/- and Pin1-/- mice: oligodendrocyte apoptosis and cytochrome c release are reduced in JNK3-/- but elevated in Pin1-/- mice. This report thus unveils a mechanism by which cytochrome c release is under the opposite control of JNK3 and Pin1, regulators for which the activities are intricately coupled.
    The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 09/2007; 27(31):8395-404. DOI:10.1523/JNEUROSCI.2478-07.2007 · 6.75 Impact Factor