Identification of potent and selective small-molecule inhibitors of caspase-3 through the use of extended tethering and structure-based drug design

Sunesis Pharmaceuticals, Inc., 341 Oyster Point Boulevard, South San Francisco, California 94080, USA.
Journal of Medicinal Chemistry (Impact Factor: 5.48). 12/2002; 45(23):5005-22. DOI: 10.1021/jm020230j
Source: PubMed

ABSTRACT The design, synthesis, and in vitro activities of a series of potent and selective small-molecule inhibitors of caspase-3 are described. From extended tethering, a salicylic acid fragment was identified as having binding affinity for the S(4) pocket of caspase-3. X-ray crystallography and molecular modeling of the initial tethering hit resulted in the synthesis of 4, which reversibly inhibited caspase-3 with a K(i) = 40 nM. Further optimization led to the identification of a series of potent and selective inhibitors with K(i) values in the 20-50 nM range. One of the most potent compounds in this series, 66b, inhibited caspase-3 with a K(i) = 20 nM and selectivity of 8-500-fold for caspase-3 vs a panel of seven caspases (1, 2, and 4-8). A high-resolution X-ray cocrystal structure of 4 and 66b supports the predicted binding modes of our compounds with caspase-3.

  • [Show abstract] [Hide abstract]
    ABSTRACT: 2-(Thiophen-2-yl)-1-((thiophen-2-yl)methyl)-1H-1,3-benzodiazole (HL) is synthesized and characterized by elemental analysis, UV-Vis, FT-IR, (1)H, (13)C NMR, mass spectra, scanning electron microscope (SEM) and single crystal X-ray diffraction. The crystal structure is stabilized by intermolecular CH⋯N and CH⋯π interactions. The molecular structure is also optimized at the B3LYP/6-31G level using density functional theory (DFT). The structural parameters from the theory are nearer to those of crystal, the calculated total energy of coordination is -1522.814a.u. The energy of HOMO-LUMO and the energy gap are -0.20718, -0.04314, 0.16404a.u, respectively. All data obtained from the spectral studies support the structural properties of the compound HL. The benzimidazole ring is essentially planar. The in vitro biological screening effects of the synthesized compound is tested against four bacterial and four fungal strains by well diffusion method. Antioxidant property and DNA binding behaviour of the compound has been investigated using spectrophotometric method.
    Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy 04/2014; 129C:429-437. DOI:10.1016/j.saa.2014.03.067 · 2.13 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A one-pot synthesis of benzimidazoles from gem-dibromomethylarenes is described. The reaction shows the method to prepare a variety of benzimidazole analogues with excellent yield.
    ChemInform 12/2010; 51(50). DOI:10.1016/j.tetlet.2010.09.080
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neurodegenerative disorders are major consequences of excessive apoptosis caused by a proteolytic enzyme known as caspase-3. Therefore, caspase-3 inhibition has become a validated therapeutic approach for neurodegenerative disorders. We performed pharmacophore modeling on some synthetic derivatives of caspase-3 inhibitors (pyrrolo[3,4-c]quinoline-1,3-diones) using PHASE 3.0. This resulted in the common pharmacophore hypothesis AAHRR.6 which might be responsible for the biological activity: two aromatic rings (R) mainly in the quinoline nucleus, one hydrophobic (H) group (CH3), and two acceptor (A) groups (-C=O). After identifying a valid hypothesis, we also developed an atom-based 3D-QSAR model applying the PLS algorithm. The developed model was statistically robust (q (2) = 0.53; pred_r (2) = 0.80). Additionally, we have performed molecular docking studies, cross-validated our results, and gained a deeper insight into its molecular recognition process. Our developed model may serve as a query tool for future virtual screening and drug designing for this particular target.
    BioMed Research International 01/2013; 2013:306081. DOI:10.1155/2013/306081 · 2.71 Impact Factor