Decreased Bone Density, Elevated Serum Osteoprotegerin, and β‐Cross‐Laps in Wilson Disease

First Department of Medicine, Semmelweis University, Budapest, Hungary.
Journal of Bone and Mineral Research (Impact Factor: 6.83). 12/2002; 17(11):1961-7. DOI: 10.1359/jbmr.2002.17.11.1961
Source: PubMed

ABSTRACT Osteopathia has been reported in Wilson disease (WD), but bone density has not been measured; therefore, we performed bone mineral density (BMD), bone mineral content (BMC), and quantitative bone ultrasound (QUS) assessments, as well as measured the serum levels of osteocalcin (OCN), beta-cross-laps (beta-CTx's), and the recently discovered osteoprotegerin (OPG) and its ligand RANKL to investigate the underlying mechanism of osseous disorders. Serum OCN, beta-CTx, OPG, and RANKL levels were measured by ELISA in 21 WD patients and in 20 age- and gender-matched healthy subjects. BMD, BMC, and QUS parameters were also determined. Osteoporosis was present in 9/21 (43%) WD patients. Abnormal QUS parameters were found in 7 (33%) of the patients. Although serum OCN levels were similar in patients and controls (29.93 +/- 24.65 mg/ml vs. 29.84 +/- 6.89 mg/ml), beta-CTx and OPG levels were significantly increased in WD compared with the healthy controls (625.4 +/- 312.3 pg/ml vs. 423.6 +/- 144.3 pg/ml and p = 0.022 and 7.2 +/- 3.4 pM vs. 3.5 +/- 1.0 pM and p < 0.001, respectively). No difference was observed in the RANKL level. There was a positive correlation between OCN and beta-CTx (r = 0.55; p = 0.01). We proved high occurrence of osteoporosis in WD. Negative bone remodeling balance is a consequence of increased bone resorption, which is indicated by elevated beta-CTx. The novel finding of elevated serum OPG may reflect a compensatory reaction to enhanced osteoclast activity, despite the normal OCN level.

Download full-text


Available from: Viktória Ferencz, Dec 19, 2013
62 Reads
  • Source
    • "In fact, in a group of women monitored for thyroid carcinoma, postmenopausal patients showed higher levels of serum OPG and lower levels of BMD compared to premenopausal patients [24]. Other authors [8] state that circulating OPG levels reflect an antiresorptive activity in bone or are significantly related to BMD [25], while a negative relationship between OPG and bone turnover status have been reported [26] [27] [28]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Osteoprotegerin (OPG) is a protein expressed by osteoblasts that, linking the receptor activator of nuclear factor kappaB (RANK) ligand (RANKL), produced by osteoblasts, blocks the process of osteoclastic differentiation and modulates osteoclastic apoptosis. Raloxifene (RAL) stimulates the production of OPG from osteoblasts, as demonstrated in vitro, carring out their antiresorption activity, at least in part, as means of the OPG/RANK/RANKL system. The aim of this study was to evaluate in vivo if the RAL treatment of postmenopausal women was associated to changes in serum OPG; moreover, to evaluate the serum changes of bone turnover modulators interleukin-6 (IL-6) and C-telopeptides of type-1 collagen (CrossLaps). A prospective, randomized, placebo-controlled study was designed. A group of consecutive healthy postmenopausal women (n=40) referred to II Menopause Centre of the Department of Gynaecology of Second University of Naples for climacteric syndrome was enrolled and divided in two groups: (n=20) postmenopausal women received for 6 months oral raloxifene (60 mg/day) versus (n=20) postmenopausal women received placebo tablets. Serum OPG levels in postmenopausal women after RAL treatment are statistically significant increased (P<0.001) versus baseline (P=0.007) versus placebo. These in vivo data demonstrate that RAL could improve osteoporosis, also through an increase of OPG production by osteoblasts.
    Maturitas 02/2007; 56(1):38-44. DOI:10.1016/j.maturitas.2006.05.007 · 2.94 Impact Factor
  • Current Opinion in Gastroenterology 06/2003; 19(3):194-202. DOI:10.1097/00001574-200305000-00003 · 4.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Biglycan is a matrix proteoglycan with a possible role in bone turnover. In a 4-week study with sham-operated or OVX biglycan-deficient or wildtype mice, we show that biglycan-deficient mice are resistant to OVX-induced trabecular bone loss and that there is a gender difference in the response to biglycan deficiency. Biglycan (bgn) is a small extracellular matrix proteoglycan enriched in skeletal tissues, and biglycan-deficient male mice have decreased trabecular bone mass and bone strength. The purpose of this study was to investigate the bone phenotype of the biglycan-deficient female mice and to investigate the effect of estrogen depletion by ovariectomy (OVX). OVX or sham operations were performed on 21-week-old mice that were divided into four groups: wt sham (n = 7), wt OVX (n = 9), bgn-deficient sham (n = 10) and bgn-deficient OVX (n = 10). The mice were killed 4 weeks after surgery. Bone mass and bone turnover were analyzed by peripheral quantitative computed tomography (pQCT), biochemical markers, and histomorphometry. In contrast to the male mice, there were only few effects of bgn deficiency on bone metabolism in female mice, showing a clear gender difference. However, when stressed by OVX, the female bgn knockout (KO) mice were resistant to the OVX-induced trabecular bone loss. The wt mice showed a decrease in trabecular bone mineral density by pQCT measurements, a decrease in trabecular bone volume (BV/TV), and an increase in mineral apposition rate. In contrast, no significant changes were detected in bgn KO mice after OVX. In addition, analysis of the bone resorption marker deoxypyridinoline showed no significant increase in the bgn KO OVX mice compared with bgn KO sham mice. Measurements of serum osteoprotegerin (OPG) and RANKL revealed increased levels of OPG and decreased levels of RANKL in the bgn KO mice compared with wt mice. In conclusion, the bgn deficiency protects against increased trabecular bone turnover and bone loss in response to estrogen depletion, supporting the concept that bgn has dual roles in bone, where it may modulate both formation and resorption ultimately influencing the bone turnover process.
    Journal of Bone and Mineral Research 01/2004; 18(12):2152-8. DOI:10.1359/jbmr.2003.18.12.2152 · 6.83 Impact Factor
Show more