Novel ATP6V1B1 and ATP6V0A4 mutations in autosomal recessive distal renal tubular acidosis with new evidence for hearing loss.

Department of Medical Genetics, University of Cambridge, UK.
Journal of Medical Genetics (Impact Factor: 5.64). 12/2002; 39(11):796-803.
Source: PubMed

ABSTRACT Autosomal recessive distal renal tubular acidosis (rdRTA) is characterised by severe hyperchloraemic metabolic acidosis in childhood, hypokalaemia, decreased urinary calcium solubility, and impaired bone physiology and growth. Two types of rdRTA have been differentiated by the presence or absence of sensorineural hearing loss, but appear otherwise clinically similar. Recently, we identified mutations in genes encoding two different subunits of the renal alpha-intercalated cell's apical H(+)-ATPase that cause rdRTA. Defects in the B1 subunit gene ATP6V1B1, and the a4 subunit gene ATP6V0A4, cause rdRTA with deafness and with preserved hearing, respectively. We have investigated 26 new rdRTA kindreds, of which 23 are consanguineous. Linkage analysis of seven novel SNPs and five polymorphic markers in, and tightly linked to, ATP6V1B1 and ATP6V0A4 suggested that four families do not link to either locus, providing strong evidence for additional genetic heterogeneity. In ATP6V1B1, one novel and five previously reported mutations were found in 10 kindreds. In 12 ATP6V0A4 kindreds, seven of 10 mutations were novel. A further nine novel ATP6V0A4 mutations were found in "sporadic" cases. The previously reported association between ATP6V1B1 defects and severe hearing loss in childhood was maintained. However, several patients with ATP6V0A4 mutations have developed hearing loss, usually in young adulthood. We show here that ATP6V0A4 is expressed within the human inner ear. These findings provide further evidence for genetic heterogeneity in rdRTA, extend the spectrum of disease causing mutations in ATP6V1B1 and ATP6V0A4, and show ATP6V0A4 expression within the cochlea for the first time.

Download full-text


Available from: Rezan Topaloğlu, Jul 06, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Distal renal tubular acidosis (dRTA) is a rare genetic disease caused by mutations in different genes involved in the secretion of H+ ions in the intercalated cells of the collecting duct. Both autosomal dominant and recessive forms have been described; the latter is also associated with sensorineural hearing loss. Methods: Twenty-two Tunisian families were analyzed for mutations in the ATP6V1B1 and ATP6V0A4 genes by direct sequencing. Dating of the founder mutations was performed. Results: Two founder mutations in the ATP6V1B1 gene were found in 16/27 dRTA cases. The p.Ile386Hisfs*56 founder mutation was estimated to be older than 2400 years and no correlations were found with deafness. For the remaining patients, two mutations in the ATP6V0A4 gene, one of them being novel, were found in three Tunisian cases. The presence of a heterozygous missense mutation p.T30I, of the ATP6V1B1 gene, was identified in six patients, while no mutations of the second gene were detected. No deleterious mutations of either ATP6V1B1 or ATP6V0A were found for the two probands. Conclusion: Our study gives evidence of phenotypic and genotypic heterogeneity of dRTA in the Tunisian population. Five different mutations were found, two of them were due to a founder effect, and screening of these mutations could provide a rapid and valuable tool for diagnosis of dRTA.
    Genetic Testing and Molecular Biomarkers 10/2014; 18(11). DOI:10.1089/gtmb.2014.0175
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hereditary distal renal tubular acidosis (dRTA) is caused by mutations of genes encoding subunits of the H+-ATPase (ATP6V0A4 and ATP6V1B1) expressed in α-intercalated cells of the distal renal tubule and in the cochlea. We report on a 2-year-old girl with distal RTA and profound speech delay which was initially misdiagnosed as autism. Genetic analysis showed compound heterozygous mutations with one known and one novel mutation of the ATP6V1B1 gene; cerebral magnetic resonance imaging (MRI) revealed bilateral enlargement of the endolymphatic sacs of the inner ear. With improved cooperation, audiometric testing showed that hearing loss was most profound on the right, where endolymphatic sac enlargement was greatest, demonstrating a clear link between the degree of deafness and the degree of inner ear abnormality. This case indicates the value of MRI for diagnosis of inner ear involvement in very young children with distal RTA. Although citrate therapy quickly corrects the acidosis and restores growth, early diagnosis of deafness is crucial so that hearing aids can be used to assist acquisition of speech and to provide enough auditory nerve stimulation to assure the affected infants remain candidates for cochlear implantation.
    01/2013; 2013:356031. DOI:10.1155/2013/356031
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The V-ATPase is a multisubunit complex that transports protons across membranes. Mutations of its B1 or a4 subunit are associated with distal renal tubular acidosis and deafness. In the kidney, the a4 subunit is expressed in intercalated cells of the distal nephron, where the V-ATPase controls acid/base secretion, and in proximal tubule cells, where its role is less clear. Here, we report that a4 KO mice suffer not only from severe acidosis but also from proximal tubule dysfunction with defective endocytic trafficking, proteinuria, phosphaturia and accumulation of lysosomal material and we provide evidence that these findings may be also relevant in patients. In the inner ear, the a4 subunit co-localized with pendrin at the apical side of epithelial cells lining the endolymphatic sac. As a4 KO mice were profoundly deaf and displayed enlarged endolymphatic fluid compartments mirroring the alterations in pendrin KO mice, we propose that pendrin and the proton pump co-operate in endolymph homeostasis. Thus, our mouse model gives new insights into the divergent functions of the V-ATPase and the pathophysiology of a4-related symptoms.
    EMBO Molecular Medicine 10/2012; 4(10):1057-71. DOI:10.1002/emmm.201201527