Article

Novel ATP6V1B1 and ATP6V0A4 mutations in autosomal recessive distal renal tubular acidosis with new evidence for hearing loss.

Department of Medical Genetics, University of Cambridge, UK.
Journal of Medical Genetics (Impact Factor: 5.7). 12/2002; 39(11):796-803. DOI: 10.1136/jmg.39.11.796
Source: PubMed

ABSTRACT Autosomal recessive distal renal tubular acidosis (rdRTA) is characterised by severe hyperchloraemic metabolic acidosis in childhood, hypokalaemia, decreased urinary calcium solubility, and impaired bone physiology and growth. Two types of rdRTA have been differentiated by the presence or absence of sensorineural hearing loss, but appear otherwise clinically similar. Recently, we identified mutations in genes encoding two different subunits of the renal alpha-intercalated cell's apical H(+)-ATPase that cause rdRTA. Defects in the B1 subunit gene ATP6V1B1, and the a4 subunit gene ATP6V0A4, cause rdRTA with deafness and with preserved hearing, respectively. We have investigated 26 new rdRTA kindreds, of which 23 are consanguineous. Linkage analysis of seven novel SNPs and five polymorphic markers in, and tightly linked to, ATP6V1B1 and ATP6V0A4 suggested that four families do not link to either locus, providing strong evidence for additional genetic heterogeneity. In ATP6V1B1, one novel and five previously reported mutations were found in 10 kindreds. In 12 ATP6V0A4 kindreds, seven of 10 mutations were novel. A further nine novel ATP6V0A4 mutations were found in "sporadic" cases. The previously reported association between ATP6V1B1 defects and severe hearing loss in childhood was maintained. However, several patients with ATP6V0A4 mutations have developed hearing loss, usually in young adulthood. We show here that ATP6V0A4 is expressed within the human inner ear. These findings provide further evidence for genetic heterogeneity in rdRTA, extend the spectrum of disease causing mutations in ATP6V1B1 and ATP6V0A4, and show ATP6V0A4 expression within the cochlea for the first time.

0 Bookmarks
 · 
136 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ubiquitous multisubunit vacuolar-type proton pump (H+- or V-ATPase) is essential for acidification of diverse intracellular compartments. It is also present in specialized forms at the plasma membrane of intercalated cells in the distal nephron, where it is required for urine acidification, and in osteoclasts, playing an important role in bone resorption by acid secretion across the ruffled border membrane. It was reported previously that, in human, several of the renal pump's constituent subunits are encoded by genes that are different from those that are ubiquitously expressed. These paralogous proteins may be important in differential functions, targeting or regulation of H+-ATPases. They include the d subunit, where d1 is ubiquitous whereas d2 has a limited tissue expression. This article reports on an investigation of d2. It was first confirmed that in mouse, as in human, kidney and bone are two of the main sites of d2 mRNA expression. d2 mRNA and protein appear later during nephrogenesis than does the ubiquitously expressed E1 subunit. Mouse nephron-segment reverse transcription-PCR revealed detectable mRNA in all segments except thin limb of Henle's loop and distal convoluted tubule. However, with the use of a novel d2-specific antibody, high-intensity d2 staining was observed only in intercalated cells of the collecting duct in fresh-frozen human kidney, where it co-localized with the a4 subunit in the characteristic plasma membrane-enhanced pattern. In human bone, d2 co-localized with the a3 subunit in osteoclasts. This different subunit association in different tissues emphasizes the possibility of the H+-ATPase as a future therapeutic target.
    Journal of the American Society of Nephrology 06/2005; 16(5):1245-56. · 8.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Primary distal renal tubular acidosis (dRTA) caused by mutations in the genes that codify for the H + -ATPase pump subunits is a heterogeneous disease with a poor phenotype-genotype correlation. Up to now, large cohorts of dRTA Tunisian patients have not been analyzed, and molecular defects may differ from those described in other ethnicities. We aim to identify molecular defects present in the ATP6V1B1, ATP6V0A4 and SLC4A1 genes in a Tunisian cohort, according to the following algorithm: first, ATP6V1B1 gene analysis in dRTA patients with sensorineural hearing loss (SNHL) or unknown hearing status. Afterwards, ATP6V0A4 gene study in dRTA patients with normal hearing, and in those without any structural mutation in the ATP6V1B1 gene despite presenting SNHL. Finally, analysis of the SLC4A1 gene in those patients with a negative result for the previous studies. 25 children (19 boys) with dRTA from 20 families of Tunisian origin were studied. DNAs were extracted by the standard phenol/chloroform method. Molecular analysis was performed by PCR amplification and direct sequencing. In the index cases, ATP6V1B1 gene screening resulted in a mutation detection rate of 81.25 %, which increased up to 95 % after ATP6V0A4 gene analysis. Three ATP6V1B1 mutations were observed: one frameshift mutation (c.1155dupC; p.Ile386fs), in exon 12; a G to C single nucleotide substitution, on the acceptor splicing site (c.175-1G > C; p.?) in intron 2, and one novel missense mutation (c.1102G > A; p.Glu368Lys), in exon 11. We also report four mutations in the ATP6V0A4 gene: one single nucleotide deletion in exon 13 (c.1221delG; p.Met408Cysfs*10); the nonsense c.16C > T; p.Arg6*, in exon 3; and the missense changes c.1739 T > C; p.Met580Thr, in exon 17 and c.2035G > T; p.Asp679Tyr, in exon 19. Molecular diagnosis of ATP6V1B1 and ATP6V0A4 genes was performed in a large Tunisian cohort with dRTA. We identified three different ATP6V1B1 and four different ATP6V0A4 mutations in 25 Tunisian children. One of them, c.1102G > A; p.Glu368Lys in the ATP6V1B1 gene, had not previously been described. Among deaf since childhood patients, 75 % had the ATP6V1B1 gene c.1155dupC mutation in homozygosis. Based on the results, we propose a new diagnostic strategy to facilitate the genetic testing in North Africans with dRTA and SNHL.
    BMC Medical Genetics 11/2013; 14(1):119. · 2.54 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Immune mechanisms alone cannot directly account for exocrine gland dysfunction and extraglandular features such as renal tubular acidosis, neuropathy, hearing loss and fatigue in Sjögren's syndrome (SS). Absence of Vacuolar ATPase (V-ATPase) has been reported in SS related renal tubular acidosis (RTA). We hypothesise how defect in V-ATPase could account for decreased neurotransmitter release leading onto exocrine dysfunction, neuroendocrine manifestations and hearing loss which are well described manifestations in SS. S-phase-kinase-associated protein-1 (Skp1) is a constituent of RAVE which is involved in V-ATPase assembly. It is also a component of SCF ligase which is crucial in NFκB signalling. SKP1 also interacts with TRIM 21/Ro 52 which is an autoantigen in SS. By virtue of these interactions, we postulate how a defective skp1 could fit into the existing pathogenesis of SS and also account for increased risk of lymphoma in SS as well as congenital heart block in fetus of mothers with SS.
    Medical Hypotheses 01/2014; · 1.18 Impact Factor

Full-text

View
19 Downloads
Available from
May 30, 2014