Novel ATP6V1B1 and ATP6V0A4 mutations in autosomal recessive distal renal tubular acidosis with new evidence for hearing loss

Department of Medical Genetics, University of Cambridge, UK.
Journal of Medical Genetics (Impact Factor: 6.34). 12/2002; 39(11):796-803.
Source: PubMed


Autosomal recessive distal renal tubular acidosis (rdRTA) is characterised by severe hyperchloraemic metabolic acidosis in childhood, hypokalaemia, decreased urinary calcium solubility, and impaired bone physiology and growth. Two types of rdRTA have been differentiated by the presence or absence of sensorineural hearing loss, but appear otherwise clinically similar. Recently, we identified mutations in genes encoding two different subunits of the renal alpha-intercalated cell's apical H(+)-ATPase that cause rdRTA. Defects in the B1 subunit gene ATP6V1B1, and the a4 subunit gene ATP6V0A4, cause rdRTA with deafness and with preserved hearing, respectively. We have investigated 26 new rdRTA kindreds, of which 23 are consanguineous. Linkage analysis of seven novel SNPs and five polymorphic markers in, and tightly linked to, ATP6V1B1 and ATP6V0A4 suggested that four families do not link to either locus, providing strong evidence for additional genetic heterogeneity. In ATP6V1B1, one novel and five previously reported mutations were found in 10 kindreds. In 12 ATP6V0A4 kindreds, seven of 10 mutations were novel. A further nine novel ATP6V0A4 mutations were found in "sporadic" cases. The previously reported association between ATP6V1B1 defects and severe hearing loss in childhood was maintained. However, several patients with ATP6V0A4 mutations have developed hearing loss, usually in young adulthood. We show here that ATP6V0A4 is expressed within the human inner ear. These findings provide further evidence for genetic heterogeneity in rdRTA, extend the spectrum of disease causing mutations in ATP6V1B1 and ATP6V0A4, and show ATP6V0A4 expression within the cochlea for the first time.

Download full-text


Available from: Rezan Topaloglu,
40 Reads
  • Source
    • "The ATP6V0A4 gene located in the 7q33- 34 region has 23 exons, of which 20 encode the 840 amino acid transmembrane a4 subunit of the H + ATPase. Recent studies demonstrated that several families with dRTA and deafness excluded linkage to ATP6V1B1 and some with dRTA and normal hearing are not linked to ATP6V0A4, suggesting that there may be additional genes involved in dRTA (Stover et al., 2002; Vargas-Poussou et al., 2006). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Distal renal tubular acidosis (dRTA) is a rare genetic disease caused by mutations in different genes involved in the secretion of H+ ions in the intercalated cells of the collecting duct. Both autosomal dominant and recessive forms have been described; the latter is also associated with sensorineural hearing loss. Methods: Twenty-two Tunisian families were analyzed for mutations in the ATP6V1B1 and ATP6V0A4 genes by direct sequencing. Dating of the founder mutations was performed. Results: Two founder mutations in the ATP6V1B1 gene were found in 16/27 dRTA cases. The p.Ile386Hisfs*56 founder mutation was estimated to be older than 2400 years and no correlations were found with deafness. For the remaining patients, two mutations in the ATP6V0A4 gene, one of them being novel, were found in three Tunisian cases. The presence of a heterozygous missense mutation p.T30I, of the ATP6V1B1 gene, was identified in six patients, while no mutations of the second gene were detected. No deleterious mutations of either ATP6V1B1 or ATP6V0A were found for the two probands. Conclusion: Our study gives evidence of phenotypic and genotypic heterogeneity of dRTA in the Tunisian population. Five different mutations were found, two of them were due to a founder effect, and screening of these mutations could provide a rapid and valuable tool for diagnosis of dRTA.
    Genetic Testing and Molecular Biomarkers 10/2014; 18(11). DOI:10.1089/gtmb.2014.0175 · 1.46 Impact Factor
  • Source
    • "Mutations in the gene that encodes AE1 usually result in distal RTA13). Mutations in the ATP6V0A4 and ATP6V1B1 genes encoding the a4 and B1 subunits of vacuolar H+-ATPase can cause inherited distal RTA and sensorineural hearing loss14-16). Most patients with distal RTA have hypokalemia because the inability to excrete H+ is compensated for by increased K+ secretion. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Type I (distal) renal tubular acidosis (RTA) is a disorder associated with the failure to excrete hydrogen ions from the distal renal tubule. It is characterized by hyperchloremic metabolic acidosis, an abnormal increase in urine pH, reduced urinary excretion of ammonium and bicarbonate ions, and mild deterioration in renal function. Hypercalciuria is common in distal RTA because of bone resorption, which increases as a buffer against metabolic acidosis. This can result in intractable rickets. We describe a case of distal RTA with nephrocalcinosis during follow-up of rickets in a patient who presented with clinical manifestations of short stature, failure to thrive, recurrent vomiting, dehydration, and irritability.
    09/2013; 18(3):152-5. DOI:10.6065/apem.2013.18.3.152
  • Source
    • "Thus, PRR is a direct or indirect regulator of gene expression in α-ICs. The importance of these findings is underscored by the fact that disruption of α-IC function due to mutations in genes encoding H+-ATPase α4 subunit or AE1 results in inheritable forms of dRTA in humans [37], [38]. ICs are present in the collecting duct in a random distribution among the majority principal cells (PCs). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The role of the prorenin receptor (PRR) in the regulation of ureteric bud (UB) branching morphogenesis is unknown. Here, we investigated whether PRR acts specifically in the UB to regulate UB branching, kidney development and function. We demonstrate that embryonic (E) day E13.5 mouse metanephroi, isolated intact E11.5 UBs and cultured UB cells express PRR mRNA. To study its role in UB development, we conditionally ablated PRR in the developing UB (PRR (UB-/-)) using Hoxb7 (Cre) mice. On E12.5, PRR (UB-/-) mice had decreased UB branching and increased UB cell apoptosis. These defects were associated with decreased expression of Ret, Wnt11, Etv4/Etv5, and reduced phosphorylation of Erk1/2 in the UB. On E18.5, mutants had marked kidney hypoplasia, widespread apoptosis of medullary collecting duct cells and decreased expression of Foxi1, AE1 and H(+)-ATPase α4 mRNA. Ultimately, they developed occasional small cysts in medullary collecting ducts and had decreased nephron number. To test the functional consequences of these alterations, we determined the ability of PRR (UB-/-) mice to acidify and concentrate the urine on postnatal (P) day P30. PRR (UB-/-) mice were polyuric, had lower urine osmolality and a higher urine pH following 48 hours of acidic loading with NH4Cl. Taken together, these data show that PRR present in the UB epithelia performs essential functions during UB branching morphogenesis and collecting duct development via control of Ret/Wnt11 pathway gene expression, UB cell survival, activation of Erk1/2, terminal differentiation and function of collecting duct cells needed for maintaining adequate water and acid-base homeostasis. We propose that mutations in PRR could possibly cause renal hypodysplasia and renal tubular acidosis in humans.
    PLoS ONE 05/2013; 8(5):e63835. DOI:10.1371/journal.pone.0063835 · 3.23 Impact Factor
Show more