Dynamic interaction of CD2 with the GYF and the SH3 domain of compartmentalized effector molecules

Protein Engineering Group and Molecular Modeling Group, Forschungsinstitut für Molekulare Pharmakologie and Freie Universität Berlin, Robert-Rössle-Strasse 10, D-13125 Berlin, Germany.
The EMBO Journal (Impact Factor: 10.43). 12/2002; 21(22):5985-95. DOI: 10.1093/emboj/cdf602
Source: PubMed


Intracellular protein interaction domains are essential for eukaryotic signaling. In T cells, the CD2BP2 adaptor binds two membrane-proximal proline-rich motifs in the CD2 cytoplasmic tail via its GYF domain, thereby regulating interleukin-2 production. Here we present the structure of the GYF domain in complex with a CD2 tail peptide. Unlike SH3 domains, which use two surface pockets to accommodate proline residues of ligands, the GYF domain employs phylogenetically conserved hydrophobic residues to create a single interaction surface. NMR analysis shows that the Fyn but not the Lck tyrosine kinase SH3 domain competes with CD2BP2 GYF-domain binding to the same CD2 proline-rich sequence in vitro. To test the in vivo significance of this competition, we used co-immunoprecipitation experiments and found that CD2BP2 is the ligand of the membrane-proximal proline-rich tandem repeat of CD2 in detergent-soluble membrane compartments, but is replaced by Fyn SH3 after CD2 is translocated into lipid rafts upon CD2 ectodomain clustering. This unveils the mechanism of a switch of CD2 function due to an extracellular mitogenic signal.

Download full-text


Available from: Ronald Kühne, May 13, 2014
  • Source
    • "The main helix is tilted away from the sheet, providing space for an array of stacked aromatic side chains which create the binding site for the PPG motif of the peptide ligand (reviewed in Kofler and Freund (2006)). Monovalent interactions between GYF domains and peptide targets have reported dissociation constants of about 200 lM (Freund et al., 2002). The GYF domain is thought to be involved in splicing and splicing-associated processes, immune cell function and antigen presentation (Kofler and Freund, 2006). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Several binding scaffolds that are not based on immunoglobulins have been designed as alternatives to traditional monoclonal antibodies. Many of them have been developed to bind to folded proteins, yet cellular networks for signaling and protein trafficking often depend on binding to unfolded regions of proteins. This type of binding can thus be well described as a peptide-protein interaction. In this review, we compare different peptide-binding scaffolds, highlighting that armadillo repeat proteins (ArmRP) offer an attractive modular system, as they bind a stretch of extended peptide in a repeat-wise manner. Instead of generating each new binding molecule by an independent selection, preselected repeats - each complementary to a piece of the target peptide - could be designed and assembled on demand into a new protein, which then binds the prescribed complete peptide. Stacked armadillo repeats (ArmR), each typically consisting of 42 amino acids arranged in three α-helices, build an elongated superhelical structure which enables binding of peptides in extended conformation. A consensus-based design approach, complemented with molecular dynamics simulations and rational engineering, resulted in well-expressed monomeric proteins with high stability. Peptide binders were selected and several structures were determined, forming the basis for the future development of modular peptide-binding scaffolds.
    Journal of Structural Biology 08/2013; 185(2). DOI:10.1016/j.jsb.2013.07.012 · 3.23 Impact Factor
  • Source
    • "The small interface between the peptides and their protein domain partners facilitates low-affinity weak interactions that are easily formed and disrupted to regulate cellular responses. Indeed cell surface receptors that mediate immune responses are often coupled to intracellular signaling pathways by recognition of modular protein interaction domains that bind a short LM for example, CD2:CD2BP interaction (KD = μM) [54]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The current version of the human immunome network consists of nearly 1400 interactions involving approximately 600 proteins. Intermolecular interactions mediated by proline-rich motifs (PRMs) are observed in many facets of the immune response. The proline-rich regions are known to preferentially adopt a polyproline type II helical conformation, an extended structure that facilitates transient intermolecular interactions such as signal transduction, antigen recognition, cell-cell communication and cytoskeletal organization. The propensity of both the side chain and the backbone carbonyls of the polyproline type II helix to participate in the interface interaction makes it an excellent recognition motif. An advantage of such distinct chemical features is that the interactions can be discriminatory even in the absence of high affinities. Indeed, the immune response is mediated by well-orchestrated low-affinity short-duration intermolecular interactions. The proline-rich regions are predominantly localized in the solvent-exposed regions such as the loops, intrinsically disordered regions, or between domains that constitute the intermolecular interface. Peptide mimics of the PRM have been suggested as potential antagonists of intermolecular interactions. In this paper, we discuss novel PRM-mediated interactions in the human immunome that potentially serve as attractive targets for immunomodulation and drug development for inflammatory and autoimmune pathologies.
    International Journal of Peptides 05/2012; 2012(7):634769. DOI:10.1155/2012/634769
  • Source
    • "One of these identified loci, CG5198, is predicted to be involved in processes that are likely associated with wound healing. Specifically, the human homologue of CG5198, CD2 Binding Protein 2 (CD2BP2), binds to the adhesion molecule CD2 and induces cytokine production in T cells, a key component of the mammalian immune response [14], [15]. In a Drosophila cell culture system, CG5198 was found to be involved in the phagocytosis of fungi and bacteria, suggesting a possible role in innate immunity [16]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Epithelia act as physical barriers protecting living organisms and their organs from the surrounding environment. Simple epithelial tissues have the capacity to efficiently repair wounds through a resealing mechanism. The known molecular mechanisms underlying this process appear to be conserved in both vertebrates and invertebrates, namely the involvement of the transcription factors Grainy head (Grh) and Fos. In Drosophila, Grh and Fos lead to the activation of wound response genes required for epithelial repair. ERK is upstream of this pathway and known to be one of the first kinases to be activated upon wounding. However, it is still unclear how ERK activation contributes to a proper wound response and which molecular mechanisms regulate its activation. In a previous screen, we isolated mutants with defects in wound healing. Here, we describe the role of one of these genes, hole-in-one (holn1), in the wound healing process. Holn1 is a GYF domain containing protein that we found to be required for the activation of several Grh and Fos regulated wound response genes at the wound site. We also provide evidence suggesting that Holn1 may be involved in the Ras/ERK signaling pathway, by acting downstream of ERK. Finally, we show that wound healing requires the function of EGFR and ERK signaling. Based on these data, we conclude that holn1 is a novel gene required for a proper wound healing response. We further propose and discuss a model whereby Holn1 acts downstream of EGFR and ERK signaling in the Grh/Fos mediated wound closure pathway.
    PLoS ONE 11/2011; 6(11):e28349. DOI:10.1371/journal.pone.0028349 · 3.23 Impact Factor
Show more