Cannabinoids promote oligodendrocyte progenitor survival: involvement of cannabinoid receptors and phosphatidylinositol-3 kinase/Akt signaling.

Department of Neural Plasticity, Cajal Institute, Consejo Superior de Investigaciones Cientificas, 28002 Madrid, Spain.
Journal of Neuroscience (Impact Factor: 6.91). 12/2002; 22(22):9742-53.
Source: PubMed

ABSTRACT Cannabinoids exert pleiotropic actions in the CNS, including the inhibition of inflammatory responses and the enhancement of neuronal survival after injury. Although cannabinoid receptors are distributed widely in brain, their presence has not been investigated previously in oligodendrocytes. This study examined the expression of cannabinoid type 1 (CB1) receptors in rat oligodendrocytes in vivo and in culture and explored their biological function. Expression of CB1 receptors by oligodendrocytes was demonstrated immunocytochemically in postnatal and in adult white matter as well as in oligodendrocyte cultures. Reverse transcription-PCR and Western blotting further confirmed the presence of CB1 receptors. Oligodendrocyte progenitors undergo apoptosis with the withdrawal of trophic support, as determined by TUNEL assay and caspase-3 activation, and both the selective CB1 agonist arachidonyl-2'-chloroethylamide/(all Z)-N-(2-cycloethyl)-5,8,11,14-eicosatetraenamide (ACEA) and the nonselective cannabinoid agonists HU210 and (+)-Win-55212-2 enhanced cell survival. To investigate intracellular signaling involved in cannabinoid protection, we focused on the phosphatidylinositol-3 kinase (PI3K)/Akt pathway. HU210, (+)-Win-55212-2, and ACEA elicited a time-dependent phosphorylation of Akt. Pertussis toxin abolished Akt activation, indicating the involvement of G(i)/G(o)-protein-coupled receptors. The CB1 receptor antagonist SR141716A partially inhibited Akt phosphorylation in response to HU210 and (+)-Win-55212-2 and abolished the effects of ACEA. Trophic support deprivation downregulated Akt activity, and cannabinoids recovered phospho-Akt levels. Inhibition of PI3K abrogated the survival action and the recovery of Akt activity in response to cannabinoids. SR141716A prevented only the protection conferred by ACEA. Nevertheless, SR141716A and the selective CB2 receptor antagonist SR144528 in combination inhibited the prosurvival action of HU210, which is in accordance with the finding of CB2 receptor expression by oligodendroglial cells. These data identify oligodendrocytes as potential targets of cannabinoid action in the CNS.

  • [Show abstract] [Hide abstract]
    ABSTRACT: It is well known that the cannabinoid system has a significant role in the regulation of the immune responses. Cannabinoid receptors CB1 and CB2 are expressed on T lymphocytes and mediate the immunomodulatory effects of cannabinoids on T cell functions. Here we show that the treatment of proteolipid protein (PLP)139-151-specific T cells with SR141716A, a CB1 inverse agonist and prototype of the diarylpyrazoles series, induced a strong inhibition of firm adhesion in inflamed brain venules in intravital microscopy experiments. In contrast, SR144528, a potent CB2 inverse agonist, had no significant effect on both rolling and arrest of activated T cells. In addition, two analogs of SR141716A and CB1 inverse agonists, AM251 and AM281 inhibited encephalitogenic T cell adhesion suggesting that selective CB1 inverse agonism interfere with lymphocyte trafficking in the CNS. Flow cytometry experiments showed that CB1 inverse agonists have no effect on adhesion molecule expression suggesting that CB1 blockade interferes with signal transduction pathways controlling T cell adhesion in inflamed brain venules. In addition, integrin clustering was not altered after treatment with CB1 inverse agonists suggesting that adhesion blockade is not due to the modulation of integrin valency. Notably, the inhibitory effect exerted by AM251 and AM281 on the adhesive interactions was completely reverted in the presence of protein kinase A (PKA) inhibitor H89, suggesting that cAMP and PKA activation play a key role in the adhesion blockade mediated by CB1 inverse agonists. To further strengthen these results and unveil a previously unknown inhibitory role of cAMP on activated T cell adhesion in vivo in the context of CNS inflammation, we showed that intracellular increase of cAMP induced by treatment with Bt2cAMP, a permeable analog of cAMP, and phosphodiesterase (PDE) inhibitor theophylline efficiently blocked the arrest of encephalitogenic T cells in inflamed brain venules. Our data show that modulation of CB1 function has anti-inflammatory effects and suggests that inverse agonism of CB1 block signal transduction mechanisms controlling encephalitogenic T cells adhesion in inflamed brain venules by a PKA-dependent mechanism.
    Journal of neuroimmunology 01/2011; 233(1-2):97-105. · 2.84 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Adhesion molecules are critical players in the regulation of transmigration of blood leukocytes across the blood–brain barrier in multiple sclerosis (MS). Cannabinoids (CBs) are potential therapeutic agents in the treatment of MS, but the mechanisms involved are only partially known. Using a viral model of MS we observed that the cannabinoid agonist WIN55,212-2 administered at the time of virus infection suppresses intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) in brain endothelium, together with a reduction in perivascular CD4+ T lymphocytes infiltrates and microglial responses. WIN55,212-2 also interferes with later progression of the disease by reducing symptomatology and neuroinflammation. In vitro data from brain endothelial cell cultures, provide the first evidence of a role of peroxisome proliferator-activated receptors gamma (PPARγ) in WIN55,212-2-induced downregulation of VCAM-1. This study highlights that inhibition of brain adhesion molecules by WIN55,212-2 might underline its therapeutic effects in MS models by targeting PPAR-γ receptors.
    Molecular and Cellular Neuroscience 02/2009; · 3.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Signaling through fibroblast growth factor receptors (FGFRs) is essential for many cellular processes including proliferation and migration, as well as differentiation events such as myelination. Anosmin-1 is an extracellular matrix (ECM) glycoprotein that interacts with the fibroblast growth factor receptor 1 (FGFR1) to exert its biological actions through this receptor, although the intracellular pathways underlying anosmin-1 signaling remain largely unknown. This protein is defective in the X-linked form of Kallmann syndrome (KS) and has a prominent role in the migration of neuronal and oligodendroglial precursors. We have shown that anosmin-1 exerts a chemotactic effect via FGFR1 on neuronal precursors from the subventricular zone (SVZ) and the essential role of the ERK1/2 signaling. We report here the positive chemotactic effect of FGF2 and anosmin-1 on rat and mouse postnatal OPCs via FGFR1. The same effect was observed with the truncated N-terminal region of anosmin-1 (A1Nt). The introduction in anosmin-1 of the missense mutation F517L found in patients suffering from KS annulled the chemotactic activity; however, the mutant form carrying the disease-causing mutation E514K also found in KS patients, behaved as the wild-type protein. The chemoattraction exhibited by FGF2 and anosmin-1 on OPCs was blocked by the mitogen-activated protein kinase (MAPK) inhibitor U0126, suggesting that the activation of the ERK1/2 MAPK signaling pathway following interaction with the FGFR1 is necessary for FGF2 and anosmin-1 to exert their chemotactic effect. In fact, both proteins were able to induce the phosphorylation of the ERK1/2 kinases after the activation of the FGFR1 receptor. GLIA 2013.
    Glia 12/2013; · 5.07 Impact Factor

Full-text (2 Sources)

Available from
May 31, 2014