Article

Potential applications of PLGA film-implants in modulating in vitro drugs release.

Dpto. Ingeniería Química y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de La Laguna, 38200 Tenerife, Spain.
International Journal of Pharmaceutics (Impact Factor: 3.99). 12/2002; 248(1-2):149-56. DOI: 10.1016/S0378-5173(02)00431-3
Source: PubMed

ABSTRACT In this work we evaluate poly(lactic/glycolic) acid (PLGA) film-implants as potential biodegradable devices for controlled release of two different drugs: 5-Fluorouridine (5-FUR), a conventional low molecular weight water-soluble compound and SPf66 malaria vaccine, a therapeutic synthetic polypeptide. Three types of devices were prepared by solvent-casting techniques alone or combined with compression method: simple monolithic discs (SMD), multilayer discs with a central monolithic layer (MLDM), and multilayer discs with a central drug-reservoir (MLDR). For the highly water-soluble drug, 5-FUR, in vitro release from SMD showed an initial burst (24% in 2 h) followed by prolonged release over 20 days. In contrast, from a MLDM (two drug-free PLGA discs were added to the SMD) showed an initial lag-time of 12 days followed by a very fast second release phase. Finally, when the load of this system was increased from 3 to 9%, an extended release over 20 days with a low burst effect was obtained. For SPf66, the central reservoir containing the synthetic polypeptide MLDR reduces the possibility of degradation due to peptide contact with polymer solution. When four layers were added, 10 days sustained-release was obtained without any burst effect. With six layers a moderate pulse was obtained, 18-22 days from the beginning of the release. The results show the suitability of the proposed devices to control release and avoid the burst effect with highly water-soluble drugs; as well as modulate in vitro peptide release.

0 Bookmarks
 · 
63 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: A novel three-dimension micro-device was formulated to control delivery of 5-fluorouracil (5-FU) for the treatment of solid tumors. The poly-(lactic-co-glycolic) acid (PLGA), which is both biocompatible and biodegradable, was used as carrier material. The characteristics of drug release in vitro and in vivo and the performance of the micro-device after implantation in tumor bearing mice were evaluated. A constant release profile from in vitro test was obtained for a period of 7 days, and it correlated well with the in vivo release profile. In the distribution experiment of 5-FU micro-device, it was demonstrated that 5-FU remained in the tumor tissues for more than 7 days after implantation. Likewise, we found that the 5-FU concentration in tumor correlated well with the in vivo release. Tumors treated with 5-FU loaded micro-device of three different dosages showed significant tumor reduction (P < 0.05) compared with empty control micro-device 7 days after administration. Moreover, the implantation treatment showed enhanced efficacy compared with the intraperitoneal administration with the same dosage. These results suggested that the three-dimensional micro-device may provide a promising local and controlled release drug delivery system, which may enable delivery of multiple drugs for post-surgical chemotherapy against solid tumor.
    Drug Delivery 01/2012; 19(1):36-44. · 2.02 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A sustained drug release system based on the injectable poly(lactic-co-glycolic acid) (PLGA) microspheres loaded with β-methasone was prepared for localized treatment of rheumatic arthritis. The microscopy and structure of microspheres were characterized by scanning electron microscope (SEM) and Fourier transform infrared (FTIR). The effects of various formulation parameters on the properties of microspheres and in vitro release pattern of β-methasone were also investigated. The results demonstrated that increase in drug/polymer ratio led to increased particle size as well as drug release rate. Increase in PLGA concentration led to increased particle size, but decreased burst release. The drug encapsulation efficiency increased sharply by increasing polyvinyl alcohol (PVA) concentration in the aqueous phase from 1.5 to 2.0%. β-methasone release rate decreased considerately with decreasing OP (organic phase)/AP (aqueous phase) volume ratio. Stirring rate had significantly influence on the particle size and encapsulation efficiency. Independent of formulation parameters, β-methasone was slowly released from the PLGA microspheres over 11 days. The drug release profile of high drug loaded microspheres agree with Higuchi equation with a release mechanism of diffusion and erosion, that of middle drug loaded microspheres best agreed with Hixcon-Crowell equation and controlled by diffusion and erosion as well. The low drug loaded microspheres well fitted to logarithm normal distribution equation with mechanism of purely Fickian diffusion.
    Pharmaceutical Development and Technology 02/2012; · 1.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Poly (lactic-co-glycolic acid) (PLGA) coatings on implant materials are widely used in controlled drug delivery applications. Typically, such coatings are made with non-porous films. Here, we have synthesized a thin PLGA film coating with a highly ordered microporous structure using a simple and inexpensive water templating "breath figure" technique. A single stage process combining spin coating and breath figure process was used to obtain drug incorporated porous thin films. The films were characterized by scanning electron microscope (SEM) to observe the surface and bulk features of porosity and also, degradation pattern of the films. Moreover, the effect of addition of small amount of poly (ethylene glycol) (PEG) into PLGA was characterized. SEM analysis revealed an ordered array of ~2 µm sized pores on the surface with the average film thickness measured to be 20 µm. The incorporation of hydrophilic poly (ethylene glycol) (PEG) enhances pore structure uniformity and facilitates ingress of water into the structure. A five week in vitro degradation study showed a gradual deterioration of the breath figure pores. During the course of degradation, the surface pore structure deteriorates to initially flatten the surface. This is followed by the formation of new pinprick pores that eventually grow into a macroporous film prior to film breakup. Salicylic acid (highly water soluble) and Ibuprofen (sparingly water soluble) were chosen as model drug compounds to characterize release rates, which are higher in films of the breath figure morphology rather than in non-porous films. The results are of significance in the design of biodegradable films used as coatings to modulate delivery.
    Biomatter. 04/2012; 2(2):77-86.