A single amino acid exchange inverts susceptibility of related receptor tyrosine kinases for the ATP site inhibitor STI-571.

Research Unit Molecular Cell Biology, Medical Faculty, Friedrich Schiller University, D-07747 Jena, Germany.
Journal of Biological Chemistry (Impact Factor: 4.65). 03/2003; 278(7):5148-55. DOI: 10.1074/jbc.M209861200
Source: PubMed

ABSTRACT The tyrosine kinase inhibitor STI-571 potently blocks BCR-Abl, platelet-derived growth factor (PDGF) alpha- and beta-receptors, and c-Kit kinase activity. Flt3, a receptor tyrosine kinase closely related to PDGF receptors and c-Kit is, however, not inhibited by STI-571. Sequence alignments of different kinases and indications from the crystal structure of the STI-571 Abl kinase complex revealed amino acid residues that are probably crucial for this activity profile. It was predicted that Flt3 Phe-691 in the beta5 strand may sterically prevent interaction with STI-571. The point mutants Flt3 F691T and PDGFbeta-receptor T681F were constructed, and kinase assays showed that the Flt3 mutant but not the PDGFbeta-receptor mutant is inhibited by STI-571. Docking of STI-571 into computer models of the PDGFbeta-receptor and Flt3 kinase domains and comparison with the crystal structure of the STI-571 Abl kinase complex indicated very similar binding sites among the three nonphosphorylated kinases, suggesting corresponding courses of their Asp-Phe-Gly motifs and activation loops. Accordingly, we observed reduced sensitivity of preactivated compared with nonactivated PDGFR-beta for the inhibition by STI-571. Courses of the activation loop that collide with STI-571 binding explain its inactivity at other kinases as the insulin receptor. The binding site models of PDGFR-beta and Flt3 were applied to predict structural approaches for more selective PDGFbeta-receptor inhibitors.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: FMS-Like-Tyrosine kinase-3 (FLT3) mutations are found in about 30% of cases of acute myeloid leukemia and confer an increased relapse rate and reduced overall survival. Targeting this tyrosine kinase by direction inhibition is the focus of both preclinical and clinical research in AML. Several molecules are in clinical development inhibit FLT3, but thus far clinical responses have been limited. Correlative studies from monotherapy trials have established that responses require sustained, effective FLT3 inhibition in vivo. Studies combining FLT3 inhibitors with chemotherapy have demonstrated increased remission rates to date but have yet to produce a survival advantage. Currently the only approved FLT3 inhibitor available for off-label use is sorafenib, which clearly has clinical activity but does not commonly lead to a complete response. Several FLT3 inhibitors are currently being tested as single agents and in combination with chemotherapy, and it seems likely that a clinically useful drug will eventually emerge.
    Current drug targets 04/2010; 11(7):781-9. · 3.93 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: For a subpopulation of acute myeloid leukemia (AML) patients, the constitutively activated tyrosine kinase, mutant FLT3, has emerged as a promising target for therapy. The development of drug resistance, however, is a growing concern for mutant FLT3 inhibitors, such as PKC412. Potential therapeutic benefit can arise from the combination of two structurally diverse inhibitors that target-but bind differently to-the same protein or from two inhibitors with completely different mechanisms of action. Thus, there is a need for identification and development of novel FLT3 inhibitors that have the ability to positively combine with PKC412 or standard chemotherapeutic agents used to treat AML as a way to suppress the development of drug resistance and consequently prolong disease remission. Here, we report the effects of the novel type II ATP-competitive inhibitors, HG-7-85-01 and HG-7-86-01, which potently and selectively target mutant FLT3 protein kinase activity and inhibit the proliferation of cells harboring FLT3-ITD or FLT3 kinase domain point mutants via induction of apoptosis and cell cycle inhibition. Antileukemic activity of HG-7-85-01 was shown in vivo to be comparable with that observed with PKC412 in a bioluminescence assay using NCr nude mice harboring Ba/F3-FLT3-ITD-luc+ cells. HG-7-85-01 was also observed to override PKC412 resistance. Finally, HG-7-85-01 and HG-7-86-01 synergized with PKC412 and standard chemotherapeutic agents against mutant PKC412-sensitive and some PKC412-resistant, FLT3-positive cells. Thus, we present a structurally novel class of FLT3 inhibitors that warrants consideration for clinical testing against drug-resistant disease in AML patients.
    Molecular Cancer Therapeutics 09/2010; 9(9):2468-77. · 5.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Since protein kinases have been found to be implicated in many diseases, first of all malignancies, they are considered as promising therapeutic targets. Many protein kinase inhibitors have been designed by now. These molecules have a low molecular weight and most of them bind to protein kinases competing with ATP for the ATP-binding site. Some protein kinase inhibitors currently undergo clinical trials or have already been successfully introduced into treatment as exemplified by Bcr-Abl, c-kit and PDGFR inhibitor imatinib mesylate (Gleevec), flavopiridol and roscovitine, inhibitors of cyclin-dependent kinases, or erlotinib and gefitinib inhibiting EGFR. Discovery of these molecules seems to begin a new era in medicine, especially oncology. Targeting protein kinases represents a promising approach and gives us new hopes of effective non-invasive cancer treatment.
    Folia biologica 02/2006; 52(4):137-48. · 1.22 Impact Factor