Article

Lsm Proteins are required for normal processing and stability of ribosomal RNAs

Wellcome Trust Centre for Cell Biology, Swann Building, King's Buildings, University of Edinburgh, United Kingdom.
Journal of Biological Chemistry (Impact Factor: 4.57). 02/2003; 278(4):2147-56. DOI: 10.1074/jbc.M208856200
Source: PubMed

ABSTRACT Depletion of any of the essential Lsm proteins, Lsm2-5p or Lsm8p, delayed pre-rRNA processing and led to the accumulation of many aberrant processing intermediates, indicating that an Lsm complex is required to maintain the normally strict order of processing events. In addition, high levels of degradation products derived from both precursors and mature rRNAs accumulated in Lsm-depleted strains. Depletion of the essential Lsm proteins reduced the apparent processivity of both 5' and 3' exonuclease activities involved in 5.8S rRNA processing, and the degradation intermediates that accumulated were consistent with inefficient 5' and 3' degradation. Many, but not all, pre-rRNA species could be coprecipitated with tagged Lsm3p, but not with tagged Lsm1p or non-tagged control strains, suggesting their direct interaction with an Lsm2-8p complex. We propose that Lsm proteins facilitate RNA protein interactions and structural changes required during ribosomal subunit assembly.

0 Followers
 · 
333 Views
  • Source
    • "A difference was however noted in that at the late time point of depletion of 22 h, the DKH core and G207A mutations (Fig. 2A, lanes 9,18, respectively ) accumulated a novel RNA that extended from site D to B 2 (data not shown). The D-B 2 RNA was previously reported in strains genetically depleted for Sm-like proteins and is indicative of alterations in pre-rRNA processing kinetics (Kufel et al. 2003). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Eukaryotic ribosome synthesis is a highly dynamic process that involves the transient association of scores of trans-acting factors to nascent pre-ribosomes. Many ribosome synthesis factors are nucleocytoplasmic shuttling proteins that engage the assembly pathway at early nucleolar stages and escort pre-ribosomes to the nucleoplasm and/or the cytoplasm. Here, we report that two 40S ribosome synthesis factors, the KH-domain protein DIM2 and the HEAT-repeats/Armadillo-domain and export factor RRP12, are nucleolar restricted upon nutritional, osmotic, and oxidative stress. Nucleolar entrapment of DIM2 and RRP12 was triggered by rapamycin treatment and was under the strict control of the target of rapamycin (TOR) signaling cascade. DIM2 binds pre-rRNAs directly through its KH domain at the 5'-end of ITS1 (D-A(2) segment) and, consistent with its requirements in early nucleolar pre-rRNA processing, is required for efficient cotranscriptional ribosome assembly. The substitution of a single and highly conserved amino acid (G207A) within the KH motif is sufficient to inhibit pre-rRNA processing in a fashion similar to genetic depletion of DIM2. DIM2 carries an evolutionarily conserved putative nuclear export sequence (NES) at its carboxyl-terminal end that is required for efficient pre-40S ribosome export. Strikingly, DIM2 and RRP12 are both involved in the nucleocytoplasmic translocation of pre-ribosomes, suggesting that this step in the ribosome assembly pathway has been selected as a regulatory target for the TOR pathway.
    RNA 09/2008; 14(10):2061-73. DOI:10.1261/rna.1176708 · 4.62 Impact Factor
  • Source
    • "They may therefore also have indirect effects on tRNA modification. Lsm6p has in fact also been implicated in tRNA processing (Kufel et al. 2003). "
    [Show abstract] [Hide abstract]
    ABSTRACT: We have screened a collection of haploid yeast knockout strains for increased sensitivity to 5-fluorouracil (5-FU). A total of 138 5-FU sensitive strains were found. Mutants affecting rRNA and tRNA maturation were particularly sensitive to 5-FU, with the tRNA methylation mutant trm10 being the most sensitive mutant. This is intriguing since trm10, like many other tRNA modification mutants, lacks a phenotype under normal conditions. However, double mutants for nonessential tRNA modification enzymes are frequently temperature sensitive, due to destabilization of hypomodified tRNAs. We therefore tested if the sensitivity of our mutants to 5-FU is affected by the temperature. We found that the cytotoxic effect of 5-FU is strongly enhanced at 38 degrees C for tRNA modification mutants. Furthermore, tRNA modification mutants show similar synthetic interactions for temperature sensitivity and sensitivity to 5-FU. A model is proposed for how 5-FU kills these mutants by reducing the number of tRNA modifications, thus destabilizing tRNA. Finally, we found that also wild-type cells are temperature sensitive at higher concentrations of 5-FU. This suggests that tRNA destabilization contributes to 5-FU cytotoxicity in wild-type cells and provides a possible explanation why hyperthermia can enhance the effect of 5-FU in cancer therapy.
    RNA 05/2008; 14(4):666-74. DOI:10.1261/rna.966208 · 4.62 Impact Factor
  • Source
    • "The second conserved sequence, which spans a region between aa 1000 and 1090, shows a high similarity with the active domain of SceSnp3p (Fig. 4B). This protein has an important function in binding and stabilization of the 3 end of the spliceosomal U6 snRNA (Kufel et al., 2003). AniPso2p FA shows a highly conserved Pso2p A domain situated around aa 1440 and 1820 (third domain, Fig. 4B). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The eukaryotic family of Pso2/Snm1 exo/endonuclease proteins has important functions in repair of DNA damages induced by chemical interstrand cross-linking agents and ionizing radiation. These exo/endonucleases are also necessary for V(D)J recombination and genomic caretaking. However, despite the growing biochemical data about this family, little is known about the number of orthologous/paralogous Pso2p/Snm1p sequences in eukaryotes and how they are phylogenetically organized. In this work we have characterized new Pso2p/Snm1p sequences from the finished and unfinished eukaryotic genomes and performed an in-depth phylogenetic analysis. The results indicate that four phylogenetically related groups compose the Pso2p/Snm1p family: (i) the Artemis/Artemis-like group, (ii) the Pso2p A group, (iii) the Pso2p B group and (iv) the Pso2p Plasmodium group. Using the available biochemical and genomic information about Pso2p/Snm1p family, we concentrate our research in the study of Pso2p A, B and Plasmodium groups. The phylogenetic results showed that A and B groups can be organized in specific subgroups with different functions in DNA metabolism. Moreover, we subjected selected Pso2p A, B and Plasmodium proteins to hydrophobic cluster analysis (HCA) in order to map and to compare conserved regions within these sequences. Four conserved regions could be detected by HCA, which are distributed along the metallo-@b-lactamase and @b-CASP motifs. Interestingly, both Pso2p A and B proteins are structurally similar, while Pso2p Plasmodium proteins have a unique domain organization. The possible functions of A, B and Plasmodium groups are discussed.
    Computational Biology and Chemistry 12/2005; 29(6):420-433. DOI:10.1016/j.compbiolchem.2005.09.004 · 1.60 Impact Factor
Show more