Tumor-specific activation of hTERT-derived promoters by tumor suppressive E1A-mutants involves recruitment of p300/CBP/HAT and suppression of HDAC-1 and defines a combined tumor targeting and suppression system

University Hospital Essen, Essen, North Rhine-Westphalia, Germany
Oncogene (Impact Factor: 8.56). 12/2002; 21(52):7991-8000. DOI: 10.1038/sj.onc.1205965
Source: PubMed

ABSTRACT Adenovirus (Ad) E1A proteins are transcriptional regulators with antioncogenic but also transforming properties. We have previously shown that transformation-defective Ad5 E1A-derivatives are excellent tumor suppressors. For tumor-specific expression of the E1A-derivatives we intend to use tumor specific human telomerase reverse transcriptase (hTERT) core promoters. Here, we show that Spm2 and other E1A proteins with an intact amino terminus activated all hTERT constructs 10-20-fold in malignant tumor cells but not in primary fibroblasts, without affecting the activity of endogenous telomerase. The transcription rate in tumor cells was in the range of transcription from the SV40 promoter, which qualifies an E1A-hTERT system as a putative tumor targeting/expression system. The activation of the hTERT promoter by E1A was enhanced upon deletion of the Wilms' tumor 1 negative regulatory element and maintained high after deletion of the adjacent c-Myc-responsive E-box, demonstrating an important role of the remaining sequences that contain several Sp1-motifs. E1A-mediated hTERT activation was independent from the presence of the conserved region 3 (CR3) of E1A but dependent on E1A's binding to p300/CBP and recruitment of its histone acetyltransferase activity. Moreover, E1A-Spm2 and histone deacetylase-1 behaved as antagonists with respect to the regulation of transcription from the hTERT promoter. Overall, hTERT promoter/E1A-Spm2 systems may turn out to be excellent tools for transcriptionally targeted anticancer gene therapy.

Download full-text


Available from: Ulrich Hengge, Jul 04, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Telomerase plays a role in the unlimited replicative capacity of the majority of cancer cells and provides a potential anticancer target. The regulation of telomerase is complex but transcriptional control of its two essential components, hTERC (RNA component) and hTERT (reverse transcriptase component), is of major importance. To investigate this further, we have used the adenoviral protein, E1A, as a tool to probe potential pathways involved in the control of telomerase transcription. The second exon of the adenoviral protein E1A activates both telomerase gene promoters in transient transfections. The corepressor, C terminal binding protein, is one of only two proteins known to bind to this region, and we propose that E1A activates both promoters by sequestering CtBP, thereby relieving repression. Activation by exon 2 of E1A involves the SP1 sites in both promoters, and consistent with this, SP1 and CtBP interact in coimmunoprecipitation studies. Modulation of the chromatin environment has been implicated in the regulation of hTERT transcription and appears to involve the SP1 sites. CtBP can be found within a histone-modifying complex and it is possible that a CtBP complex, associating with the SP1 sites, represses transcription from the telomerase promoters by modifying chromatin structure.
    Neoplasia 07/2005; 7(6):614-22. DOI:10.1593/neo.04766 · 5.40 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Malignant transformation from mortal, normal cells to immortal, cancer cells is generally associated with activation of telomerase and subsequent telomere maintenance. A major mechanism to regulate telomerase activity in human cells is transcriptional control of the telomerase catalytic subunit gene, human telomerase reverse transcriptase (hTERT). Several transcription factors, including oncogene products (e.g. c-Myc) and tumor suppressor gene products (e.g. WT1 and p53), are able to control hTERT transcription when over-expressed, although it remains to be determined whether a cancer-associated alteration of these factors is primarily responsible for the hTERT activation during carcinogenic processes. Microcell-mediated chromosome transfer experiments have provided evidence for endogenous factors that function to repress the telomerase activity in normal cells and are inactivated in cancer cells. At least one of those endogenous telomerase repressors, which is encoded by a putative tumor suppressor gene on chromosome 3p, acts through transcriptional repression of the hTERT gene. The hTERT gene is also a target site for viruses frequently associated with human cancers, such as human papillomavirus (HPV) and hepatitis B virus (HBV). HPV E6 protein contributes to keratinocyte immortalization and carcinogenesis through trans-activation of the hTERT gene transcription. In at least some hepatocellular carcinomas, the hTERT gene is a non-random integration site of HBV genome, which activates in cis the hTERT transcription. Thus, a variety of cellular and viral oncogenic mechanisms converge on transcriptional control of the hTERT gene. Regulation of chromatin structure through the modification of nucleosomal histones may mediate the action of these cellular and viral mechanisms. Further elucidation of the hTERT transcriptional regulation, including identification and characterization of the endogenous repressor proteins, should lead to better understanding of the complex regulation of human telomerase in normal and cancer cells and may open up new strategies for anticancer therapy.
    Carcinogenesis 08/2003; 24(7):1167-76. DOI:10.1093/carcin/bgg085 · 5.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Telomerase is a therapeutic target for cancer. Human telomerase reverse transcriptase (hTERT), the catalytic subunit of the telomerase, is transcriptionaly upregulated exclusively in about 90% of cancer cells. Previous studies have demonstrated that hTERT promoter can control the expression of exogenous genes to the telomerase-positive cancer cells, thus hTERT promoter is an excellent candidate for generating cancer-specific oncolytic adenovirus. In this study, we devised a novel oncolytic adenovirus (Ad.TERT) by replacing the normal E1A regulatory elements with hTERT promoter. Ad.TERT displays cancer-specific E1A expression, virus replication and cytolysis in in vitro experiments. In animal experiments, intratumoral administration of Ad.TERT demonstrates potent antitumoral efficacy at least in two xenograft models (Bcap37 and BEL7404). Ad.TERT was targeted by the telomerase activity in cancer cells and has potent antitumoral efficacy in vivo, and since telomerase activity is a wide-ranged tumor marker, Ad.TERT could be a powerful therapeutic agent for a variety of cancers.
    Oncogene 02/2004; 23(2):457-64. DOI:10.1038/sj.onc.1207033 · 8.56 Impact Factor