Vitamin B-12, folate, and homocysteine in depression: The Rotterdam study

Department of Psychiatry, Erasmus MC, Rotterdam, South Holland, Netherlands
American Journal of Psychiatry (Impact Factor: 13.56). 01/2003; 159(12):2099-101. DOI: 10.1176/appi.ajp.159.12.2099
Source: PubMed

ABSTRACT The associations of vitamin B(12), folate, and homocysteine with depression were examined in a population-based study.
The authors screened 3,884 elderly people for depressive symptoms. Subjects with positive screening results had psychiatric workups. Folate, vitamin B(12), and homocysteine blood levels were compared in 278 persons with depressive symptoms, including 112 with depressive disorders, and 416 randomly selected reference subjects. Adjustments were made for age, gender, cardiovascular disease, and functional disability.
Hyperhomocysteinemia, vitamin B(12) deficiency, and to a lesser extent, folate deficiency were all related to depressive disorders. For folate deficiency and hyperhomocysteinemia, the association with depressive disorders was substantially reduced after adjustment for functional disability and cardiovascular disease, but for vitamin B(12) this appeared independent.
The association of vitamin B(12) and folate with depressive disorders may have different underlying mechanisms. Vitamin B(12) may be causally related to depression, whereas the relation with folate is due to physical comorbidity.

Download full-text


Available from: Henning Tiemeier, Jun 30, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Studies in the general population have proposed links between nutrition and depression, but less is known about the perinatal period. Depletion of nutrient reserves throughout pregnancy and delayed postpartum repletion could increase the risk of perinatal depression. We examined the relationships of plasma folate and vitamin B12 concentrations during pregnancy with perinatal depression. At 26th-28th weeks of gestation, plasma folate and vitamin B12 were measured in women from the GUSTO mother-offspring cohort study in Singapore. Depressive symptoms were measured with the Edinburgh Postnatal Depression Scale (EPDS) during the same period and at 3-month postpartum. EPDS scores of ≥15 during pregnancy or ≥13 at postpartum were indicative of probable depression. Of 709 women, 7.2% (n = 51) were identified with probable antenatal depression and 10.4% (n = 74) with probable postnatal depression. Plasma folate concentrations were significantly lower in those with probable antenatal depression than those without (mean ± SD; 27.3 ± 13.8 vs 40.4 ± 36.5 nmol/L; p = 0.011). No difference in folate concentrations was observed in those with and without probable postnatal depression. In adjusted regression models, the likelihood of probable antenatal depression decreases by 0.69 for every unit variation (increase) in folate (OR = 0.69 per SD increase in folate; 95% CI: 0.52, 0.94). Plasma vitamin B12 concentrations were not associated with perinatal depression. Lower plasma folate status during pregnancy was associated with antenatal depression, but not with postnatal depression. Replication in other studies is needed to determine the direction of causality between low folate and antenatal depression. NCT01174875.
    Journal of Psychiatric Research 04/2014; DOI:10.1016/j.jpsychires.2014.04.006 · 4.09 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Advances in molecular biology, emergence of novel techniques and huge amount of information generated in the post-Human Genome Project era have fostered the emergence of new disciplines in the field of nutritional research: Nutrigenomics deals with the effect of diet on gene expression whereas nutrigenetics refers to the impact of inherited traits on the response to a specific dietary pattern, functional food or supplement. Understanding the role of micronutrient supplementation with specific genetic backgrounds may provide an important contribution to a new optimum health strategy based on individualized nutritional treatment and may provide the strategies for the development of safer and more effective dietary interventions. This overview of the various aspects of supplementation of micronutrients in the era of nutrigenetics and nutrigenomics may provide a better understanding of novel nutritional research approach and provide an additional insight that can be applied to the daily dietary practice.
    International Journal of Food Sciences and Nutrition 03/2014; 65(5). DOI:10.3109/09637486.2014.898258 · 1.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Low folate intake in the presence of the functional MTHFR 677 C > T (rs1801133) polymorphism is an important cause of elevated homocysteine levels previously implicated in major depressive disorder (MDD) and many other chronic diseases. In this study the clinical relevance and inter-relationship of these aspects were evaluated in 86 South African patients diagnosed with MDD and 97 population-matched controls participating in a chronic diseases screening program. A questionnaire-based clinical and nutrition assessment was performed, homocysteine levels determined, and all study participants genotyped for MTHFR 677 C > T (rs1801133) using allele-specific TaqMan technology. The folate score was found to be significantly lower in the patient group compared to controls (p = 0.003) and correlated with increased body mass index (BMI), particularly in females with MDD (p = 0.009). BMI was significantly higher in the MDD patients compared with controls after adjustment for age and sex (p = 0.015), but this association was no longer significant after further adjustment for the level of folate intake in the diet. In MDD patients but not controls, the minor T-allele of MTHFR 677 C > T was associated with increased BMI (p = 0.032), which in turn correlated significantly with increased homocysteine levels. The significant association between BMI and homocysteine levels was observed in both the MDD patient (p = 0.049) and control (p = 0.018) study groups. The significantly higher homocysteine levels observed in MDD patients compared to controls after adjustment for age and sex (p = 0.030), therefore appears to be mediated by the effects of MTHFR 677 C > T and low folate intake on BMI. Detection of the low-penetrance MTHFR 677 C > T mutation reinforces the importance of folate intake above the recommended daily dose to prevent or restore dysfunction of the methylation pathway.
    Metabolic Brain Disease 02/2014; 29(2). DOI:10.1007/s11011-014-9506-7 · 2.40 Impact Factor